Abstract
This paper studied a maximal covering location problem with cost restrictions, to maximize level of service within predetermined cost. It is assumed that all demand have to be met. If the demand node is located within a given range, then its demand is assumed to be covered, but if it is not, then its demand is assumed to be uncovered. An uncovered demand is received a service but at an unsatisfactory level. The objective function is to maximize the sum of covered demand, Two heuristics based on the Lagrangean relaxation of allocation and decoupling are presented and tested. Upper bounds are found through a subgradient optimization and lower bounds are by a cutting algorithm suggested in this paper. The cutting algorithm enables the Lagrangean relaxation to be proceeded continually by allowing infeasible solution temporarily when the feasible solution is not easy to find through iterations. The performances are evaluated through computational experiments. It is shown that both heuristics are able to find the optimal solution in a relatively short computational time for the most instances, and that decoupling relaxation outperformed allocation relaxation.