DOI QR코드

DOI QR Code

Identification and Characterization of a Novel Angiostatin-binding Protein by the Display Cloning Method

  • Kang, Ha-Tan (Division of Life Sciences, Korea Institute of Science and Technology) ;
  • Bang, Won-Ki (Division of Biotechnology and Genetic Engineering, College of Life and Environmental Sciences, Korea University) ;
  • Yu, Yeon-Gyu (Division of Life Sciences, Korea Institute of Science and Technology)
  • 발행 : 2004.03.31

초록

Angiostatin is a potent anti-angiogenic protein. To examine the angiostatin-interacting proteins, we used the display-cloning method with a T7 phage library presenting human cDNAs. The specific T7 phage clone that bound to the immobilized angiostatin was isolated, and a novel gene encoding the displayed polypeptide on the isolated T7 phage was identified. The displayed angiostatin-binding sequence was expressed in E. coli as a soluble protein and purified to homogeneity. This novel angiostatin-binding region interacted specifically to angiostatin with a dissociation constant of $3.4{\times}10^{-7}\;M$. A sequence analysis showed that the identified sequence was a part of the large ORF of 1,998 amino acids, whose function has not yet been characterized. A Northern analysis indicated that the gene containing the angiostatin-binding sequence was expressed differentially in the developmental stages or cell types.

키워드

참고문헌

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Beck, L. Jr. and D'Amore, P. A. (1997) Vascular development: cellular and molecular regulation. FASEB J. 11, 365-373.
  3. Brouty, B. D. and B. R. Zetter, B. R. (1980) Inhibition of cell motility by interferon. Science 208, 516-518. https://doi.org/10.1126/science.6154315
  4. Cao, Y. H., Ji, R. W., Davidson, D., Schaller, J., Marti, D., Sohndel, S., McCance, S. G., O'Reilly, M. S., Llinas, M. and Folkman, J. (1996) Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. Biol. Chem. 271, 29461-29467. https://doi.org/10.1074/jbc.271.46.29461
  5. Cao, R. H., Wu, H. L., Veitonmaki, N., Linden, P., Farnebo, J., Shi, G. Y. and Cao, Y. H. (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasminmediated proteolysis. Proc. Natl. Acad. Sci. USA 96, 5728-5733. https://doi.org/10.1073/pnas.96.10.5728
  6. Causey, L. D. and Dwyer, D. S. (1996) Detection of low affinity interactions between peptides and heat shock proteins by chemiluminescence of enhanced avidity reactions (CLEAR). Nat. Biotechnol. 14, 348-351. https://doi.org/10.1038/nbt0396-348
  7. Clackson, T. and Wells, J. A. (1994) In vitro selection from protein and peptide libraries. Trends Biotechnol. 12, 173-184. https://doi.org/10.1016/0167-7799(94)90079-5
  8. Cochrane, D., Webster, C., Masih, G. and MaCafferty, J. (2000) Identification of natural ligands for SH2 domains from a phage display cDNA library. J. Mol. Biol. 297, 89-97. https://doi.org/10.1006/jmbi.2000.3561
  9. Crameri, R., Jaussi, R., Mens, G. and Blaser, K. (1994) Display of expression products of cDNA libraries on phage surfaces: a versatile screening system for selective isolation of genes by specific gene-product/ligand interaction. Eur. J. Biochem. 226, 53-58. https://doi.org/10.1111/j.1432-1033.1994.tb20025.x
  10. Daugherty, P. S., Chen, G., Olsen, M. J., Iverson, B. L. and Georgiou, G. (1998) Antibody affinity maturation using bacterial surface display. Protein Eng. 11, 825-832. https://doi.org/10.1093/protein/11.9.825
  11. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N. Eng. J. Med. 185, 1182-1186.
  12. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27-31. https://doi.org/10.1038/nm0195-27
  13. Gastl, G., Hermann, T., Steurer, M., Zmija, J., Gunsilius, E., Unger, C. and Kraft, A. (1997) Angiogenesis as a target for tumor treatment. Oncology 54, 177-184. https://doi.org/10.1159/000227685
  14. Gately, S., Twardowski, P., Stack, M. S., Cundiff, D. L., Grella, D., Castellino, F. J., Enghild, J., Kwaan, H. C., Lee, F., Kramer, R. A., Volpert, O., Bouck, N. P. and Soff, G. A. (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc. Natl. Acad. Sci. USA 94, 10868-10872. https://doi.org/10.1073/pnas.94.20.10868
  15. Gattiker, A., Gasteiger, E. and Bairoch, A. (2002) ScanProsite: a reference implementation of a PROSITE scanning tool. Applied Bioinformatics 1, 107-108.
  16. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364. https://doi.org/10.1016/S0092-8674(00)80108-7
  17. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamura, T. and Folkman, J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348, 555-557. https://doi.org/10.1038/348555a0
  18. Jesfer, L. S., De Keyser, A. and Stanssens, P. E. (1996) LambdaZLG6: a phage lambda vector for high efficiency cloning and surface expression of cDNA libraries on filamentous phage. Gene 173, 179-181. https://doi.org/10.1016/0378-1119(96)00217-X
  19. Ji, W. R., Castellino, F. J., Chang, Y., Deford, M. E., Gray, H., Villarreal, X., Kondri, M. E., Marti, D. N., Llinas, M., Schaller, J., Kramer, R. A. and Trail, P. A. (1998) Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J. 12, 1731-1738.
  20. Jin,Y., Yu, J. and Yu, Y. G. (2002) Identification of hNopp140 as a binding partner for doxorubicin with a phage display cloning method. Chem. Biol. 9, 157-162. https://doi.org/10.1016/S1074-5521(02)00096-0
  21. Joe, Y. A., Hong, Y. K., Chung, D. S., Yang, Y. J., Kang, J. K., Lee, Y. S., Chang, S. I., You, W. K., Lee, H. and Chung, S. J. (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringle 1-3. Int. J. Cancer 82, 694-699. https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<694::AID-IJC12>3.0.CO;2-C
  22. Kim, D. R. (2001) Determination of monoclonal antibodies capable of recognizing the native protein using surface plasmon resonance. J. Biochem. Mol. Biol. 34, 452-456.
  23. Klimkait, T. (2000) Restriction-PCR-a superiors replacement or restriction endonucleases in DNA cloning applications. J. Biochem. Mol. Biol. 33, 162-165.
  24. Mangalam, A. K., Aggarwal, A. and S. Naik, S. (2001) Mechanism of action of disease modifying anti-rheumatic agent, gold sodium thiomalate (GSTM). Int. J. Immunopharmacol. 6, 1165-1172.
  25. Moser, T. L., Stack, M. S., Wahl, M. L. and Pizzo, S. V. (2002) The mechanism of action of angiostatin: Can you teach an old dog new tricks? Thromb. Haemost. 87, 394-401.
  26. Moser, T. L., Stack, M. S., Asplin, I., Enghild, J. J., Hojrup, P., Everitt, L., Hubchak, S., Schnaper, H. W. and Pizzo, S. V. (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. USA 96, 2811-2816. https://doi.org/10.1073/pnas.96.6.2811
  27. Moser, T. L., Kenan, D. J., Ashley, T. A., Roy, J. A., Goodman, M. D., Misra, U. K., Cheek, D. J. and Pizzo, S. V. (2001) Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostain. Proc. Natl. Acad. Sci. USA 98, 6656-6661. https://doi.org/10.1073/pnas.131067798
  28. O'Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Mose, M., Lane, W. S., Cao, Y., Sage, E. H. and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328. https://doi.org/10.1016/0092-8674(94)90200-3
  29. Rastineiad, F., Polverini, P. J. and Bouck, N. P. (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345-355. https://doi.org/10.1016/0092-8674(89)90238-9
  30. Rodi, D. J., Janes, R. W., Sangnee, H. J., Holton, R. A., Wallace, B. A. and Makowski, L. (1999) Screening of a library of phage-displayed peptides identifies human Bcl-2 as a taxolbinding protein. J. Mol. Biol. 285, 197-203. https://doi.org/10.1006/jmbi.1998.2303
  31. Scott, J. K. and Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386-390. https://doi.org/10.1126/science.1696028
  32. Troyanovsky, R., Levchenko, T., Mansson, G., Matvijenko, O. and Holmgren, L. (2001) Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell. Biol. 19, 1247-1254.
  33. Uhr, J. W., Scheuermann, R. H., Street, N. E. and Vitetta, E. S. (1997) Cancer dormancy: opportunities for new therapeutic approaches. Nature Med. 3, 505-509. https://doi.org/10.1038/nm0597-505
  34. Zozulya, S., Lioubin, M., Hill, R. J., Abram, C. and Gishizky, M. L. (1999) Mapping signal transduction pathways by phage display. Nat. Biotechnol. 17, 1193-1198. https://doi.org/10.1038/70736

피인용 문헌

  1. Survey of the year 2004 commercial optical biosensor literature vol.18, pp.6, 2005, https://doi.org/10.1002/jmr.753
  2. Angiostatin's molecular mechanism: Aspects of specificity and regulation elucidated vol.96, pp.2, 2005, https://doi.org/10.1002/jcb.20480
  3. Identification of the HIV-1 gp41 core-binding motif - HXXNPF vol.580, pp.20, 2006, https://doi.org/10.1016/j.febslet.2006.07.067
  4. Functional cloning by phage display vol.90, pp.9, 2008, https://doi.org/10.1016/j.biochi.2008.04.003
  5. Phage display—A powerful technique for immunotherapy vol.8, pp.12, 2012, https://doi.org/10.4161/hv.21703
  6. Soluble Melanoma Cell Adhesion Molecule (sMCAM/sCD146) Promotes Angiogenic Effects on Endothelial Progenitor Cells through Angiomotin vol.288, pp.13, 2013, https://doi.org/10.1074/jbc.M112.446518
  7. Phage display and its application in vaccine design vol.60, pp.1, 2010, https://doi.org/10.1007/s13213-009-0014-7
  8. The PcG protein hPc2 interacts with the N-terminus of histone demethylase JARID1B and acts as a transcriptional co-repressor vol.42, pp.3, 2009, https://doi.org/10.5483/BMBRep.2009.42.3.154