DOI QR코드

DOI QR Code

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University) ;
  • Panyim, Sakol (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University)
  • Published : 2004.07.31

Abstract

A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Keywords

References

  1. Alder, A. J., Greenfield, N. J. and Fasman, G. D. (1973) Circulardichroism and optical rotary dispersion of proteins and polypeptides Meth. Enzymology 27, 675-735. https://doi.org/10.1016/S0076-6879(73)27030-1
  2. Aurora, R., Creamer, T. P., Srinivasan, R. and Rose, G. D. (1997) Local interaction in protein folding: Lessons from the alpha helix. J. Biol. Chem. 272, 1413-1416. https://doi.org/10.1074/jbc.272.3.1413
  3. Chmielewski, J. and Lipton, M. (1994) The rational design of a highly stable amphiphilic helical peptides. Int. J. Peptide Protein Res. 44, 152-157.
  4. Cociancich, S., Goyffon, M., Bontems, F., Bulet, P., Bouet, F., Menez, A. and Hoffmann, J. (1993) Purification and characterization of a scorpion defensin-a 4 kDa antibacterial peptide presenting structural similarities with the insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 194, 17-22. https://doi.org/10.1006/bbrc.1993.1778
  5. Cornut, I., Butner, K., Dasseux, J. L. and Dufourcq, J. (1994) The amphipathic helix concept application to the de novo design of ideally amphipathic Leu. Lys. peptides with hemolytic activity higher than that of melittin. FEBS. Lett. 349, 29-33. https://doi.org/10.1016/0014-5793(94)00621-0
  6. Cruciani, R. A., Barker, J. L., Durell, S. R., Raghunathan, G., Guy, H. R., Zasloff, M. and Stanley, E. F. (1992) Magainin 2: a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur. J. Pharmacol. 226, 287-296. https://doi.org/10.1016/0922-4106(92)90045-W
  7. Edelhoch, H. (1968) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948-1954.
  8. Gesell. J., Zasloff, M. and Opella, S. J. (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR. 9, 127-135. https://doi.org/10.1023/A:1018698002314
  9. Gromiha, M. M. and Selvaraj, S. (2001) Role of medium and long range interactions in discriminating globular and membrane proteins Int. J. Biol. Macromol. 29, 25-34. https://doi.org/10.1016/S0141-8130(01)00150-7
  10. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigenantibody interactions at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131-5135. https://doi.org/10.1073/pnas.82.15.5131
  11. Johnson, W. C. (1990) Protein secondary structure and circular dichroism: A practical guide. Proteins 7, 205-214. https://doi.org/10.1002/prot.340070302
  12. Kimura, T., Uzawa, T., Takahashi, S., Ishimori, K. and Morishima, I. (2002) Direct Observation of the Multi-step Helix Formation of Poly-L-glutamic Acids. J. Am. Chem. Soc. 124, 11596-11597. https://doi.org/10.1021/ja026639f
  13. Kinsky, S. C. (1974) Preparation of liposomes and a spectrophotometric assay for release of trapped glucose marker. Methods Enzymol. 32, 501-513. https://doi.org/10.1016/0076-6879(74)32050-2
  14. Kourie, J. I. and Shorthouse, A. A. (2000) Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. Cell Physiol. 278, 1063-1087.
  15. Krittanai, C. and Johnson, W. C. (2000) Relative order of helical propensity of amino acids changes with solvent environment. Proteins 39, 132-141. https://doi.org/10.1002/(SICI)1097-0134(20000501)39:2<132::AID-PROT3>3.0.CO;2-2
  16. Lear, J. D., Gratkowski, H. and DeGrado, W. F. (2001) De novo design, synthesis and characterization of membrane-active peptides. Biochem. Soc. Trans. 29, 559-564. https://doi.org/10.1042/BST0290559
  17. Lee, S., Kiyota, T., Kunitake, T., Matsumoto, E., Yamashita, S., Anzai, K. and Sugihara, G. (1997) De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Biochemistry 36, 3782-3791. https://doi.org/10.1021/bi962451v
  18. Li, J. D., Carroll. J. and Ellar, D. J. (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  19. Li, S. C. and Deber, C. M. (1994) A measure of helical propensity for amino acids in membrane environments. Nat. Struct. Biol. 1, 368-373. https://doi.org/10.1038/nsb0694-368
  20. Myers, J. K., Pace, C. N. and Scholtz, J. M. (1997) A direct comparison of helix propensity in proteins and peptides. Proc. Natl. Acad. Sci. USA 94, 2833-2837. https://doi.org/10.1073/pnas.94.7.2833
  21. Nolde, D. E., Sobol, A. G., Pluzhnikov, K. A., Grishin, E. V. and Arseniev, A. S. (1995) Three-dimensional structure of ectatomin from Ectatomma tuberculatum ant venom. J. Biomol. NMR. 5, 1-13. https://doi.org/10.1007/BF00227465
  22. Olson, C. A., Spek, E. J., Shi, Z., Vologodskii, A. and Kallenbach, N. R. (2001) Cooperative helix stabilization by complex Arg-Glu salt bridges. Proteins 44, 123-132. https://doi.org/10.1002/prot.1079
  23. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. and Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411-2423. https://doi.org/10.1002/pro.5560041120
  24. Parker, M. W., Postma, J. P., Pattus, F., Tucker, A. D. and Tsernoglou, D. (1992) Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J. Mol. Biol. 224, 639-657. https://doi.org/10.1016/0022-2836(92)90550-4
  25. Pawlak, M., Stankowski, S. and Schwarz, G. (1991) Mellitin induced voltage dependent conductance in DOPC lipid bilayers. Biochim. Biophys. Acta. 1062, 94-102.
  26. Puntheeranurak, T., Leetacheewa, S., Katzenmeier, G., Krittanai, C., Panyim, S. and Angsuthanasombat, C. (2001) Expression and biochemical characterization of the Bacillus thuringiensis Cry4B $\alpha$1-$\alpha$5 pore-forming fragment. J. Biochem. Mol. Biol. 34, 293-298.
  27. Schnepf, R., Horth, P., Bill, E., Wieghardt, K., Hildebrandt, P. and Haehnel, W. (2001) De novo design and characterization of copper centers in synthetic four-helix-bundle proteins. J. Am. Chem. Soc. 123, 2186-2195. https://doi.org/10.1021/ja001880k
  28. Stellwagen, E., Park, S. H., Shalongo, W., and Jain, A. (1992) The contribution of residue ion pairs to the helical stability of a model peptide. Biopolymers. 32, 1193-1200. https://doi.org/10.1002/bip.360320909
  29. Terwilliger, T. C. and Eisenberg, D. (1982) The structure of mellitin I: structure determination and partial refinement. J. Biol. Chem. 257, 6010-6015.
  30. Kimura, T., Uzawa, T., Takahashi, S., Ishimori, K. and Morishima, I. (2002) Direct observation of the multi-step helix formation of poly-L-glutamic acids J. Am. Chem. Soc. 124, 11596-11597. https://doi.org/10.1021/ja026639f
  31. Vogel, H. and Jahnig, F. (1986) The structure of mellitin in membranes. Biophys. J. 50, 573-582. https://doi.org/10.1016/S0006-3495(86)83497-X
  32. Wei, Y., Liu, T., Sazinsky, S. L., Moffet, D. A., Pelczer, I. and Hecht, M. H. (2003) Stably folded de novo proteins from a designed combinatorial library. Protein Sci. 12, 92-102. https://doi.org/10.1110/ps.0228003
  33. Wierzbicki, A., Knight, C. A., Rutland, T. J., Muccio, D. D., Pybus, B. S. and Sikes, C. S. (2000) Structure-function relationship in the antifreeze activity of synthetic alanine-lysine antifreeze polypeptides. Biomacromolecules 1, 268-274. https://doi.org/10.1021/bm000004w

Cited by

  1. Lipid vesicles in capillary electrophoretic techniques: Characterization of structural properties and associated membrane-molecule interactions vol.26, pp.4-5, 2005, https://doi.org/10.1002/elps.200410288
  2. Effect of Diaminopropionic Acid (Dap) on the Biophysical Properties of a Modified Synthetic Channel-Forming Peptide vol.10, pp.10, 2013, https://doi.org/10.1021/mp4002377