DOI QR코드

DOI QR Code

Identification, Characterization and Phylogenic Analysis of Conserved Genes within the odvp-6e/odv-e56 Gene Region of Choristoneura fumiferana Granulovirus

  • Published : 2004.03.31

Abstract

The genes that are located within the odvp-6e/odv-e56 region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing the 11 kb BamHI restriction fragment on the ChfuGV genome. The global GC content that was calculated from the data obtained from this genomic region was 34.96%. The open-reading frames (ORFs), located within the odvp-6e/odv-e56 region, are presented and compared to the equivalent ORFs that are located at the same region in other GVs. This region is composed of 14 ORFs, including three ORFs that are unique to ChfuGV with no obvious homologues in other baculoviruses as well as eleven ORFs with homologues to granuloviral ORFs, such as granulin, CfORF2, pk-1, ie-1, odv-e18, p49, and odvp-6e/odv-e56. In this study, the conceptual products of seven major conserved ORFs (granulin, CfORF2, IE-1, ODV-E18, p49 and ODVP-6E/ODV-E56) were used in order to construct phylogenetic trees. Our results show that granuloviruses can be grouped in 2 distinct groups as follows: Group I; Choristoneura fumiferana granulovirus (ChfuGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), and Adoxophyes orana granulovirus (AoGV). Group II; Xestia c-nigrum granulovirus (XcGV), Plutella xylostella granulovirus (PxGV), and Trichoplusia ni granulovirus (TnGV). The ChfuGV conserved proteins are most closely related to those of CpGV, PhopGV, and AoGV. Comparative studies, performed on gene arrangements within this region of genomes, demonstrated that three GVs from group I maintain similar gene arrangements.

Keywords

References

  1. Altshul, S. F., Gish, W., Miller, W., Meyers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Bah, A., Bergeron, J., Arella, M., Lucarotti, C. J. and Guertin, C. (1997) Identification and sequence analyses of the granulin gene of Choristoneura fumiferana granulovirus. Arch. Virol. 142, 1577-1584. https://doi.org/10.1007/s007050050181
  3. Braunagel, S. C., He, H., Ramamurthy, P. and Summers, M. D. (1996) Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-EI8, ODV-E35, and ODV-EC27. Virology 222, 100-114. https://doi.org/10.1006/viro.1996.0401
  4. Bulach, D. M., Kumar, C. A., Zaia, A., Liang, B. and Tribe, D. E. (1999) Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J. Invertebr. Pathol. 73, 59-73. https://doi.org/10.1006/jipa.1998.4797
  5. Federici, B. A. (1997) Baculoviral pathogenesis; in The Baculoviruses, Miller, L. K. (ed.), pp. 33-59, Plenum Press, New York, USA.
  6. Forte, A. J., Guertin, C. and Cabana, J. (1999) Pathogenicity of a granulovirus towards Choristoneura fumiferana. Can. Entomol. 131, 725-727. https://doi.org/10.4039/Ent131725-6
  7. Hashimoto, Y., Hayakawa, T., Ueno, Y., Fujita, T., Sano, Y. and Matsumoto, T. (2000) Sequence analysis of the Plutella xylostella granulovirus genome Virology 275, 358-372. https://doi.org/10.1006/viro.2000.0530
  8. Hayakawa, T., Ko, R., Okano, K., Seong, S. I., Goto, C. and Maeda, S. (1999). Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology 262, 277-297. https://doi.org/10.1006/viro.1999.9894
  9. Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S. and O'Reilly, D. R. (2001) Use of whole genome sequence data to infer baculovirus phylogeny. J. Virol. 75, 8117-8126. https://doi.org/10.1128/JVI.75.17.8117-8126.2001
  10. Kovacs, G. R., Choi, J., Guarino, L. A. and Summers, M. D. (1992) Functional dissection of the Autographa californica nuclear polyhedrosis virus immediate-early 1 transcriptional regulatory protein. J. Virol. 66, 7429-7437.
  11. Luque, T., Finch, R., Crook, N., O'Reilly, D. R. and Winstanley, D. (2001) The complete sequence of the Cydia pomonella granulovirus genome. J. Gen. Virol. 82, 2531-2547.
  12. Mitchell, A., Mitter, C., Regier, J. C. (2000) More taxa or more characters revisited: combining data from nuclear proteinencoding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst. Biol. 49, 202-224. https://doi.org/10.1093/sysbio/49.2.202
  13. Pearson, W. R. and Lipman, D. J. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448. https://doi.org/10.1073/pnas.85.8.2444
  14. Pei, Z., Reske, G., Huang, Q., Hammock, B. D., Qi, Y. and Chejanovsky, N. (2002) Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J. Biol. Chem. 13 277, 48677-48684. https://doi.org/10.1074/jbc.M208810200
  15. Rashidan, K. K., Nassoury, N., Merzouki, A. and Guertin, C. (2002a) Identification and characterization of a putative baculoviral transcriptional factor (IE-1) from Choristoneura fumiferana granulovirus. J. Biochem. Mol. Biol. 35, 553-561. https://doi.org/10.5483/BMBRep.2002.35.6.553
  16. Rashidan, K. K., Nassoury, N., Giannopoulos, P. N. and Guertin, C. (2002b) Identification and characterization of a conserved baculoviral structural protein ODVP-6E/ODV-E56 from Choristoneura fumiferana granulovirus. J. Biochem. Mol. Biol. 35, 595-603. https://doi.org/10.5483/BMBRep.2002.35.6.595
  17. Rohrmann, G. F. (1986) Polyhedrin structure. J. Gen. Virol. 67, 1499-1513. https://doi.org/10.1099/0022-1317-67-8-1499
  18. Swofford, D. L. (2000) PAUP Version 4, Sinauer Associates, Sunderland, USA.
  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882.
  20. Zanotto, P. M. Kessing, B. D. and Maruniak, J. E. (1993) Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J. Invertebr. Pathol. 62, 147-164. https://doi.org/10.1006/jipa.1993.1090
  21. Zoog, S. J., Schiller, J. J., Wetter, J. A., Chejanovsky, N. and Friesen, P. D. (2002) Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO 21, 5130-5140. https://doi.org/10.1038/sj.emboj.7594736

Cited by

  1. Molecular characterization and genetic organization of the inhibitor of apoptosis gene (iap-5) region of the Pieris rapae granulovirus vol.35, pp.2, 2007, https://doi.org/10.1007/s11262-007-0086-z
  2. Identification, transcriptional and phylogenetic analysis of the DNA polymerase gene of Pieris rapae granulovirus vol.34, pp.3, 2007, https://doi.org/10.1007/s11262-006-0020-9
  3. Molecular and immunohistochemical characterization of granulin gene encoded in Pieris rapae granulovirus genome vol.113, pp.1, 2013, https://doi.org/10.1016/j.jip.2012.12.003
  4. Molecular and phylogenetic characterization of Spodoptera litura granulovirus vol.46, pp.6, 2008, https://doi.org/10.1007/s12275-008-0133-z
  5. Molecular and in Silico Characterization of Achaea janata Granulovirus Granulin Gene 2017, https://doi.org/10.1007/s12539-016-0159-6
  6. Molecular and immunohistochemical characterization of the chitinase gene from Pieris rapae granulovirus vol.158, pp.8, 2013, https://doi.org/10.1007/s00705-013-1649-z
  7. Characterization and partial genome sequence analysis of Clostera anachoreta granulovirus vol.113, pp.1, 2005, https://doi.org/10.1016/j.virusres.2005.04.013
  8. Location and phylogenetic analysis of the region immediately upstream of the granulin gene of the Clostera anachoreta granulovirus vol.121, pp.1, 2006, https://doi.org/10.1016/j.virusres.2005.10.005
  9. Genetic and biological variations amongPlutella xylostella granulovirus isolates vol.36, pp.3, 2008, https://doi.org/10.1007/BF02980767