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In this paper, we address a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated 
linear storage layout in a class of unit load storage systems. Our objective is to minimize the expected single 
command travel time.
      We analyze PTL[3] to derive a fundamental property that an optimal solution to PTL[3] is one of the 
partitions based on the PAI(product activity index)-nonincreasing ordering. Using the property and partial 
enumeration, we construct an efficient exact algorithm with O(n⌈ log n⌉) for solving PTL[3]. 

Keywords: class-based dedicated storage layout, unit load system, AS/RS

†Corresponding author : Professor Moonhee Yang, Department of Industrial Engineering, Dankook University, Cheonan, 330-714,
 Fax +82-41-550-3570; E-mail myfriend@dankook.ac.kr

Received November 2003; revision received April 2004; accepted May 2004.

1. Introduction

A unit load can be defined as a unit to be moved or 
handled at one time. A storage system can be called a 
unit load storage system where unit loads are stored, 
handled, and retrieved. Automated storage/retrieval 
systems (AS/RS) or rack-supported storage systems 
can be the type of unit load systems. K-class-based 
dedicated storage policy or simply K-class-based 
storage policy employs K zones in which lots from a 
class of products, are stored randomly. Tompkins and 
White(1984) pointed out that class-based storage with 
randomized storage within each class can yield both 
the throughput benefits of dedicated storage and the 
space benefits of randomized storage. Also they 
suggested that in order to achieve both benefits, three 
to five classes may be defined.

There have appeared many papers such as Cho and 
Bozer(2001), Lee(1998), Bozer and Cho(1998), Chang, 
Wen and Lin(1995), and Hausman, Schwartz and 

Graves(1976) so on, which focused on both benefits or 
either the throughput benefits or the space benefits 
based on simulation techniques under some operating 
policies. Yang(2003) suggested a deterministic 2-class- 
based dedicated storage problem and provide a 
heuristic algorithm with O(n2) as well as a greedy 
exact algorithm by restricting one-way travel time to a 
linear form.

In this paper, we define a 3-class-based dedicated 
linear storage problem, PTL[3], in a unit load system, 
and provide an efficient exact algorithm in addition to 
some basic properties. In Section 2, we describe 
PTL[3] in detail. In Section 3, we prove a fundamental 
property that an optimal solution to PTL[3] is one of 
the partitions based on the PAI(product activity 
index)-nonincreasing ordering, and provide useful 
properties required for constructing our algorithm. In 
Section 4, based on the properties and partial 
enumeration, we construct an efficient exact algorithm 
with O(n⌈ log n⌉) for solving PTL[3] and we give 
an example and additional comments.
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Table 1.  Notation list

Notation  Meaning
Ak  set of storage locations assigned to zone k

Ck  a set of products assigned to class k

CAI(N1,N2)  ∑
N2

i=N1
d i/ ∑

N2

i=N1
r i  

given a PAI-nonincreasing ordering

 D  ∑
K

k=1
Dk = ∑

n

i=1
d i

d i  average retrieval rate of product i, for i=1, ..., n

Dk
 ∑

i∈Ck
d i, average retrieval rate from class k

E(SCK)  expected SC travel time given K classes
 K  number of classes or zones used in a unit load system
 n  number of products
Nk  number of products assigned to classes 1 through k
 O  PAI-nonincreasing ordering
 P(K) {C 1,C 2,…,CK}, a partition given K classes

PAIi or PAI( i) d i
r i

, product activity index of product i, for i=1, ..., n

r i  space requirement of product i when it is replenished

 R ∑
K

k=1
Rk = ∑

n

i= 1
r i

Rk |Ak|, number of storage locations required for zone k

t j  one-way travel time to storage location j, j=1, ..., R

Tk  expected SC travel time from an i/o point to zone k

For convenience to reader, the list of symbols used 
in this paper is given in <Table 1>. To denote 
optimality for a decision variable, a superscript (*) will 
be used at the upper right side of each symbol.

2.  Description of a 3-Class-Based Linear 
Storage Problem

Our storage system consists of R storage locations 
each of which accommodates only one unit load. The 
storage / retrieval operation is based on the 3-zone- 
based storage policy and within each zone, a storage 
location is equally likely to be selected for a storage 
operation, i.e., random assignment rule (RAN rule) is 
used.

The expected one-way travel time from a Pick-up / 
Deposit (P/D) station to storage location j is given as
t j for j=1, 2, ..., R. Without loss of generality, it is 

assumed that t 1≤t2≤…≤tR. Let Ak be a set of 
storage locations assigned to zone k for k=1, 2, 3. 

Given the t j-nondecreasing ordering, we assign the 
first |A 1| storage locations to A1, and assign the next
|A 2| storage locations to A2, and the remaining 

storage locations to A3 where |X| denotes the car- 
dinality of set X. It follows that A1= { 1, 2,…, |A 1| },
A2= { |A 1|+1, |A 1|+2, …, |A1|+ |A2| }, and A3=
{ |A 1|+ |A2|+1, |A1|+ |A2|+2, …, R}.
An arriving replenishment lot of a product i, the size 

of which is r i in unit load, contains a single product 
and is assigned randomly to open storage locations in 
one of three separate zones by using an storage/ 
retrieval (S/R) machine or operator which or who can 
carry only one unit load at a time. Let Ck be the set 
(or class) of products assigned to zone k. Then space 
requirement or the number of storage locations 
required for class k, Rk, can be expressed as

Rk = |Ak| = ∑
i∈Ck
r i (1)

  It can be observed that the number of storage 
locations for a class is not the maximum aggregate 
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inventory position for a class but the sum of space 
requirement for products assigned to the class. In fact, 
the implicit “constant-space assumption” is made since 
the problem for minimizing the maximum aggregate 
inventory position is known to be NP-hard [Hall 
(1987)] and it can make PTL[3] more complicated.

The average demand rate for a product i, d i unit 
loads / unit time, which is defined as the average 
number of retrievals per unit time, is given as a real 
constant in advance. Retrievals are performed on 
first-in first-out basis. The average demand rate from 
zone k, Dk is obtained as ∑

i∈Ck
d i. Since practically a 

class contains at least one product, it can be assumed 
that |Ck|≥ 1.

Our objective is to minimize E(SC3), the expected 
single command(SC) travel time as follows. The 
expected SC travel time to zone k, Tk, can be 
expressed as

Tk=
2
|Ak|

∑
j∈Ak
t j (2)

Since the probability of visiting zone k is Dk
D

,

E(SC3) can be expressed as

E(SC 3)= ∑
3

k=1

Dk
D
Tk (3)

                          = 2
D ∑

3

k=1

Dk
|Ak|

∑
j∈Ak
t j (4) 

where D = ∑
3

k=1
Dk. By replacing t j with pj+q for 

constants p and q, Eq.(4) can be further reduced as

E(SC3)=
p
D
{D+DR+(R1D2-D1R2)

           +(R2D3-D2R3)+(R1D3-D1R3)}+2q (5)

where R= ∑
3

k=1
Rk.  

It can be observed that E(SC3) does not depend on
t j but on ( r i,d i). Since D, R, p and q are constant 

and each class must contain at least one product, 
PTL[3] can be stated as

PTL[3] : Given n products with { ( r i,d i),i= 1,2,
…, n }, find an optimal partition, P*(3) = {C*1,C*2,C*3} 
such that we

Minimize Z= (R1D2-D1R2)+(R2D3-D2R3)
           +(R1D3-D1R3)
subject to |C k| ≥  1  for k=1, 2, 3

Dk = ∑
i∈Ck
d i for k=1, 2, 3

Rk = ∑
i∈Ck
r i for k=1, 2, 3

3.  Basic Properties of PTL[3]

3.1  A Necessary Condition
In order to facilitate our analysis, define PTL[K] to 

be the K-class-based dedicated linear storage problem 
and define P*(K) or {C*1,C*2,…,C*K} to be an 
optimal solution to PTL[K]. Let CAI(N1,N2) be

∑
N2

i=N1
d i/ ∑

N2

i=N1
r i. 

Yang(2003) analyzed PTL[2] and derived a nece- 
ssary and sufficient condition to PTL[2]. For 
convenience, we state his result in Proposition 1 as 
follows. 

Proposition 1. P*(2) is optimal to PTL[2] if and 
only if P*(2) satisfies
  PAI( i 1)≥CAI(1,n) > PAI( i 2) 
where i k∈C*k for k=1, 2.

Proposition 1 implies that if we take products by 
PAI-nonincreasing order and if we assign the first N1 
products, each PAI value of which is greater than or 
equal to CAI(1,n), to C*1 and the remaining products 
to C*2, then {C*1,C*2} is optimal. In other words, P*(2) 
is one of the partitions based on a PAI-nonincreasing 
ordering.

The natural question will be whether P*(K) is one 
of the partitions based on a PAI-nonincreasing 
ordering or not. In what follows, we prove a necessary 
condition that P*(3) is also one of the partitions based 
on a PAI-nonincreasing ordering. From now on, we 
assume that a PAI-nonincreasing ordering is given as 
O = ( 1,2,…,n). Given O, define any candidate solu- 
tion to PTL[3] as X(3) = (N 1,N2) where Nk denotes 
the number of products assigned to classes 1 through k 
for k = 1, 2, 3.

Proposition 2. (i) If P*(3) is optimal to PTL[3], 
then P*(3) satisfies 
  PAI( i 1)≥CAI(1,N*2) > PAI( i 2)  
               ≥CAI(N*1+1,n) > PAI( i 3)                    

     where i k∈C*k for k=1, 2, 3.
(ii) P*(3) is one of the partitions based on a 
PAI-nonincreasing ordering.
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Proof : Applying Proposition 1 to classes C*1 and
C*2, for i 1∈C*1, i 2∈C*2, we have

PAI( i 1)≥CAI(1,N
*
2) > PAI( i 2) (6)

Similarly, applying Proposition 1 to classes C*2 and
C*3, for i 2∈C*2, i 3∈C*3, we have

PAI(i 2)≥CAI(N
*
1+1,n) > PAI( i 3) (7)

If both Eq.(6) and Eq.(7) do not hold, E(SC3) can 
be further reduced by swapping two products which 
violate either Eq.(6) or Eq.(7). This is a contradiction 
to that P*(3) is optimal. Hence both Eq.(6) and 
Eq.(7) hold. By rearranging products in each class by 
PAI-nonincreasing order, finally P*(3) will be one of 
the partitions based on a PAI-nonincreasing ordering. 
This completes the proof.

Proposition 2 implies that P*(K) is also one of the 
partitions based on a PAI-nonincreasing ordering. 
Hence, P*(K) can be obtained by enumerating all the 
possible partitions based on a PAI-nonincreasing 
ordering. 

  Now, consider PTL[3]. In order to find a P*(3), it 
is enough to enumerate (N 1,N2). The total number of 
candidate solutions will be (n-1)(n-2)

2
 since the 

number of candidate solutions given N1 is (n-N1-1) 
where 1≤N1≤(n-2). That is, the total enumeration 
requires O(n2). However, the total enumeration can 
be further reduced by introducing “a conditional local 
optimal solution” as follows.

3.2  Conditional Local Optimal Solution
Suppose that the first N1 products of a PAI- 

nonincreasing ordering have been assigned to class 1. 
Then, N2 can be any value such that N1+1≤N2
≤(n-1). The next question will be “What value of
N2 gives the minimum E(SC3) given N1?” This 

question corresponds to finding a local optimal solu- 
tion from a set of solutions;

{ (N1,N1+1),(N1,N1+2),…,(N1,n-1)}

Clearly the minimization of E(SC3) given N1 is 
equivalent to solving a 2-class-based dedicated linear 
storage problem with the last (n-N1) products of the 
PAI-nonincreasing ordering. Let (N 1,Nc2(N 1)) be the 
local optimal solution given N1. Then from Proposi- 
tion 1, Nc2(N 1) can be determined such that 

PAI(Nc2(N1))≥CAI(N1+1,n) > PAI(N
c
2(N1)+1)

(8)

Similarly, the minimization of E(SC3) given the 
last (n-N2) products of a PAI-nonincreasing order- 
ing assigned to class 3 is equivalent to solving a 
2-class-based dedicated linear storage problem with 
the first N2 products of the PAI-nonincreasing order- 
ing. Let (Nc1(N 2),N2) be the local optimal solution 
given N2. Then, from Proposition 1, Nc1(N2) can be 
determined such that 

PAI(Nc1(N2))≥CAI(1,N2) > PAI(N
c
1(N2)+1) (9)

Hence, in order to find a P*(3), it suffices to 
enumerate all the local optimal solutions in either set
E1 or set E2 as follows:

E1= { (N1,N
c
2(N 1)), N1=1,…,(n-2)} (10)

E2= { (N
c
1(N 2),N2), N2=2,…,(n-1)} (11)

Now, we prove that Nc2(N*1 ) is N*2, and that
Nc1(N

*
2 ) is N*1.

Property 1. Given an O,
(i) Nc2(N*1 )= N*2
(ii) Nc1(N*2 )= N*1

Proof : (i) Since PAI(Nc2(N*1 ))≥CAI(N*1+1,n) 
(From Eq.(8))

                 > PAI(N*2+1) (From Proposition 2, (i)),
we have 

Nc2(N
*
1 )≤N

*
2

(12)

Similarly, since PAI(N*2)≥CAI(N*1+1,n) (From 
Proposition 2, (i)),

                            > PAI(Nc2(N*1 )+1) (From Eq.(8)
we have

N*2≤N
c
2(N

*
1 ) (13)

Therefore, from Eq.(12) and Eq.(13), Nc2(N*1 ) = N*2. 
In the similar manner, (ii) can be proved. This 
completes the proof.

3.3  Lower and Upper Bounds of N*1
If a lower and an upper bounds of N*1 are available, 

we can further reduce the enumeration. Before we 
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derive a lower and an upper bounds on N*1, we need 
the following property. 

Property 2. Given an O,
(i) Nc2(N1) is a nondecreasing function of N1.
(ii) Nc1(N2) is a nondecreasing function of N2.

Proof : (i) It is enough to prove that Nc2(N1)≤Nc2
(N 1+1). Since 
PAI(N

c
2(N1))≥CAI(N1+1,n) (From Eq.(8))

                       ≥CAI(N1+2,n) 
                      > PAI(Nc2(N1+1)+1)(From Eq.(8)),

we have PAI(Nc2(N1)) > PAI(Nc2(N1+1)+1), i.e.,
Nc2(N1)≤N

c
2(N1+1). In the similar manner, (ii) can 

be proved. This completes the proof.

 Now, consider the following property for a lower 
and an upper bounds of N*1. Let Lk and Uk be a 
lower and an upper bounds of N*k for k=1, 2 
respectively.

Property 3. Given an O, L1 and U1 can be 
obtained by solving the equations below:
(i) PAI(L 1)≥CAI(1,Nc2(1)) > PAI(L1+1)
(ii) U1=Nc1(n-1)

Proof: (i) Since a possible minimum value of L1 is 
1, Nc2(1 )≤Nc2(L 1 )≤N*2. That is, a possible minimum 
value of N*2 is Nc2(1 ). Using Proposition 2, (i), we 
can obtain L1 such that 

PAI(L1)≥CAI(1,N
c
2(1)) > PAI(L 1+1) (14)

(ii) Since a possible maximum value of U2 is (n-1),  
 Nc1(n-1) can be an upper bound of N*1. In a formal 
way, since N*2≤U2 and Nc1(N2) is a nondecreasing 
function of N2, we have

Nc1(N
*
2 )≤N

c
1(U2) (15)

Since N*1 = Nc1(N*2 ) from Property 1, (ii), and a 
possible maximum value of U2 is (n-1), it follows that  

Nc1(N
*
2 ) = N

*
1≤N

c
1(U2)≤N

c
1(n-1) (16)

Thus, U1 can be obtained from Eq.(16) as

U1=N
c
1(n-1) (17)

This completes the proof.

4.  An Exact Algorithm and an Example

4.1  Exact Algorithm
Based on Proposition 2 and properties proved above, 

an efficient exact algorithm, ALGPTL[3], which 
solves PTL[3], can be constructed as follows: 

ALGPTL[3]
Step 1. (Initialization Phase)
        Take products by PAI-nonincreasing order.
       E(SC*3)← big value
        Compute (L 1,U1) using Property 3.
Step 2. (Optimization Phase)
        For N1= L1 to U1, do
        Begin
           Find Nc2(N1) such that PAI(Nc2(N1))≥CAI 

      CAI(N1+1,n) > PAI( (Nc2(N1)+1)
           Compute E(SC3) using (N 1,Nc2(N 1))
           If E(SC3) < E(SC*3), then E(SC*3)←

      E(SC3) and (N*1,N*2)← (N 1,Nc2(N 1))
        End

Proposition 3. ALGPTL[3] solves PTL[3] in
O(n⌈ log n⌉).

Proof: Since ALGPTL[3] enumerates all the local 
optimal solutions given N1 such that L1≤N1≤U1, 
ALGPTL[3] solves PTL[3]. Now, Step 1 requires
O(n⌈ log n⌉), the maximum number of iterations 

of Step 2 is O(n) and finding Nc2(N1) requires
O(⌈ log n⌉) since a PAI-nonincreasing ordering is 

given. It follows that Step 2 requires O(n⌈ log n⌉). 
Therefore the time complexity of ALGPTL[3] is
O(n⌈ log n⌉). This completes the proof. 

4.2  An Example and Additional Comments
Suppose that the input data are given as shown in 

<Table 2> and t j= j for j=1, …, 161. Given N1=1,
E(SC3) changes depending on the value of N2 as 

shown in <Table 3>. It can be clearly observed in 
<Figure 2> that E(SC3) decreases until N2= 6 and 
increases after N2= 6, and that E(SC3) given N1= 1 
is minimized when N2= 6, i.e., Nc2(1)= 6. In the 
similar manner, changing the value of N1 from 1 to 8, 
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Table 2.  Input Data { ( r i,d i)}

Product r i d i PAI i Product r i d i PAI i

1 5 3 0.6000 6 20 4 0.2000
2 15 4 0.2670 7 12 2 0.1670
3 20 5 0.2500 8 7 1 0.1430
4 10 2 0.2000 9 7 1 0.1430
5 15 3 0.2000 10 50 6 0.1200

Figure 1.  Local optimal solution given N1 = 1.

Table 4.  Local optimal solutions given N1 = 1, 2, ..., 8

N1 Nc2(N1) D1 D2 D3 R1 R2 R3 E(SC3)

1 6 3 18 10 5 80 76 133.0968
2 6 7 14 10 20 65 76 132.2903
3* 7* 12 9 10 40 45 76 131.6774*
4 7 14 9 8 50 47 64 132.8387
5 7 17 6 8 65 32 64 134.5807
6 9 21 4 6 85 26 50 136.5161
7 9 23 2 6 97 14 50 139.0323
8 9 24 1 6 104 7 50 141.0968

we can obtain the corresponding value, Nc2(N1), to
N1 as shown in the second column of <Table 4>. 

Note that Nc2(N1) is a nondecreasing function of N1 
which was proved in Property 2. From the table, we 
have P*(3) = (N*1,N*2)= (3, 7).

As stated in ALGPTL[3], we take products by PAI- 
nonincreasing order as shown in <Table 2>, and assign 
any big value to E(SC*3). Using Property 3, (ii), we 
have U1 = 3 because Nc1(9) = 3. Note that PAI6 = 0.2 
> CAI(2,10) = 0.1795 > PAI7 = 0.1670 and that
PAI3 = 0.25 > CAI(1, 9) = 0.2252 > PAI4 = 0.2. 

Since Nc2(1) = 6 and PAI3 = 0.25 > CAI(1,6) = 
0.2471 > PAI4 = 0.2, we have L1 = 3. Note that N*1 
= 3 in this example since L1=U1.

Since PAI7 = 0.1670 > CAI(4, 10) = 0.1570 > PAI8 
= 0.1430, N*2=Nc2(3) = 7. Thus X*(3) = (3, 7), i.e., 
we assign products 1, 2 and 3 to class 1 and products 
4, 5, 6 and 7 to class 2 and the remaining products to 
class 3, which gives E(SC3) = 131.6774.

Table 3. E(SC3) depending on N2 given N1 = 1

N2 E(SC3) N2 E(SC3)

2 144.8387 6* 133.0968*
3 137.7419 7 133.8710
4 136.7097 8 135.1613
5 135.1613 9 136.4516   

Figure 2. E(SC3) given N1 = 1, 2, ..., 8 from 
   the example.
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5.  Conclusions

In this paper, we introduce a 3-class-based dedicated 
linear storage problem, PTL[3], for determining an 
optimal 3-class-based dedicated linear storage layout 
in a class of unit load storage systems.

We analyze PTL[3] to derive a fundamental property 
that an optimal solution to PTL[3] is one of the 
partitions based on the PAI-nonincreasing ordering. 
Using the property and partial enumeration, we 
construct an efficient exact algorithm, ALGPTL[3], 
with O(n⌈ log n⌉) for solving PTL[3]. Our algo- 
rithm could be utilized to construct a heuristic 
algorithm for solving a 3-class-based dedicated storage 
problem, which does not assume the linearity of the 
one-way travel time. 

Our strong conjectures are that Proposition 2 could 
be a sufficient condition and that there might exist a 
greedy algorithm for PTL[3] like that for PTL[2]. 
These conjectures can be further investigated. 
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