
Journal of the Korean Institute of Industrial Engineers
Vol. 30, No. 3, pp. 190-196, September 2004.

Optimization of a 3-Class-based Dedicated Linear Storage System
Moonhee Yang†․Sun-uk Kim

Department of Industrial Engineering, Dankook University, Cheonan, 330-714

3지역 / 지정위치 일차선형 저장시스템의 최적화

양문희․김선욱

단국대학교 공학부(산업공학전공)

In this paper, we address a layout design problem, PTL[3], for determining an optimal 3-class-based dedicated
linear storage layout in a class of unit load storage systems. Our objective is to minimize the expected single
command travel time.
 We analyze PTL[3] to derive a fundamental property that an optimal solution to PTL[3] is one of the
partitions based on the PAI(product activity index)-nonincreasing ordering. Using the property and partial
enumeration, we construct an efficient exact algorithm with O(n⌈ log n⌉) for solving PTL[3].

Keywords: class-based dedicated storage layout, unit load system, AS/RS

†Corresponding author : Professor Moonhee Yang, Department of Industrial Engineering, Dankook University, Cheonan, 330-714,
 Fax +82-41-550-3570; E-mail myfriend@dankook.ac.kr

Received November 2003; revision received April 2004; accepted May 2004.

1. Introduction

A unit load can be defined as a unit to be moved or
handled at one time. A storage system can be called a
unit load storage system where unit loads are stored,
handled, and retrieved. Automated storage/retrieval
systems (AS/RS) or rack-supported storage systems
can be the type of unit load systems. K-class-based
dedicated storage policy or simply K-class-based
storage policy employs K zones in which lots from a
class of products, are stored randomly. Tompkins and
White(1984) pointed out that class-based storage with
randomized storage within each class can yield both
the throughput benefits of dedicated storage and the
space benefits of randomized storage. Also they
suggested that in order to achieve both benefits, three
to five classes may be defined.

There have appeared many papers such as Cho and
Bozer(2001), Lee(1998), Bozer and Cho(1998), Chang,
Wen and Lin(1995), and Hausman, Schwartz and

Graves(1976) so on, which focused on both benefits or
either the throughput benefits or the space benefits
based on simulation techniques under some operating
policies. Yang(2003) suggested a deterministic 2-class-
based dedicated storage problem and provide a
heuristic algorithm with O(n2) as well as a greedy
exact algorithm by restricting one-way travel time to a
linear form.

In this paper, we define a 3-class-based dedicated
linear storage problem, PTL[3], in a unit load system,
and provide an efficient exact algorithm in addition to
some basic properties. In Section 2, we describe
PTL[3] in detail. In Section 3, we prove a fundamental
property that an optimal solution to PTL[3] is one of
the partitions based on the PAI(product activity
index)-nonincreasing ordering, and provide useful
properties required for constructing our algorithm. In
Section 4, based on the properties and partial
enumeration, we construct an efficient exact algorithm
with O(n⌈ log n⌉) for solving PTL[3] and we give
an example and additional comments.

Optimization of a 3-Class-based Dedicated Linear Storage System 191

Table 1. Notation list

Notation Meaning
Ak set of storage locations assigned to zone k

Ck a set of products assigned to class k

CAI(N1,N2) ∑
N2

i=N1
d i/ ∑

N2

i=N1
r i

given a PAI-nonincreasing ordering

 D ∑
K

k=1
Dk = ∑

n

i=1
d i

d i average retrieval rate of product i, for i=1, ..., n

Dk
 ∑

i∈Ck
d i, average retrieval rate from class k

E(SCK) expected SC travel time given K classes
 K number of classes or zones used in a unit load system
 n number of products
Nk number of products assigned to classes 1 through k
 O PAI-nonincreasing ordering
 P(K) {C 1,C 2,…,CK}, a partition given K classes

PAIi or PAI(i) d i
r i

, product activity index of product i, for i=1, ..., n

r i space requirement of product i when it is replenished

 R ∑
K

k=1
Rk = ∑

n

i= 1
r i

Rk |Ak|, number of storage locations required for zone k

t j one-way travel time to storage location j, j=1, ..., R

Tk expected SC travel time from an i/o point to zone k

For convenience to reader, the list of symbols used
in this paper is given in <Table 1>. To denote
optimality for a decision variable, a superscript (*) will
be used at the upper right side of each symbol.

2. Description of a 3-Class-Based Linear
Storage Problem

Our storage system consists of R storage locations
each of which accommodates only one unit load. The
storage / retrieval operation is based on the 3-zone-
based storage policy and within each zone, a storage
location is equally likely to be selected for a storage
operation, i.e., random assignment rule (RAN rule) is
used.

The expected one-way travel time from a Pick-up /
Deposit (P/D) station to storage location j is given as
t j for j=1, 2, ..., R. Without loss of generality, it is

assumed that t 1≤t2≤…≤tR. Let Ak be a set of
storage locations assigned to zone k for k=1, 2, 3.

Given the t j-nondecreasing ordering, we assign the
first |A 1| storage locations to A1, and assign the next
|A 2| storage locations to A2, and the remaining

storage locations to A3 where |X| denotes the car-
dinality of set X. It follows that A1= { 1, 2,…, |A 1| },
A2= { |A 1|+1, |A 1|+2, …, |A1|+ |A2| }, and A3=
{ |A 1|+ |A2|+1, |A1|+ |A2|+2, …, R}.
An arriving replenishment lot of a product i, the size

of which is r i in unit load, contains a single product
and is assigned randomly to open storage locations in
one of three separate zones by using an storage/
retrieval (S/R) machine or operator which or who can
carry only one unit load at a time. Let Ck be the set
(or class) of products assigned to zone k. Then space
requirement or the number of storage locations
required for class k, Rk, can be expressed as

Rk = |Ak| = ∑
i∈Ck
r i (1)

 It can be observed that the number of storage
locations for a class is not the maximum aggregate

192 Moonhee Yang․Leon F. McGinnis

inventory position for a class but the sum of space
requirement for products assigned to the class. In fact,
the implicit “constant-space assumption” is made since
the problem for minimizing the maximum aggregate
inventory position is known to be NP-hard [Hall
(1987)] and it can make PTL[3] more complicated.

The average demand rate for a product i, d i unit
loads / unit time, which is defined as the average
number of retrievals per unit time, is given as a real
constant in advance. Retrievals are performed on
first-in first-out basis. The average demand rate from
zone k, Dk is obtained as ∑

i∈Ck
d i. Since practically a

class contains at least one product, it can be assumed
that |Ck|≥ 1.

Our objective is to minimize E(SC3), the expected
single command(SC) travel time as follows. The
expected SC travel time to zone k, Tk, can be
expressed as

Tk=
2
|Ak|

∑
j∈Ak
t j (2)

Since the probability of visiting zone k is Dk
D

,

E(SC3) can be expressed as

E(SC 3)= ∑
3

k=1

Dk
D
Tk (3)

 = 2
D ∑

3

k=1

Dk
|Ak|

∑
j∈Ak
t j (4)

where D = ∑
3

k=1
Dk. By replacing t j with pj+q for

constants p and q, Eq.(4) can be further reduced as

E(SC3)=
p
D
{D+DR+(R1D2-D1R2)

 +(R2D3-D2R3)+(R1D3-D1R3)}+2q (5)

where R= ∑
3

k=1
Rk.

It can be observed that E(SC3) does not depend on
t j but on (r i,d i). Since D, R, p and q are constant

and each class must contain at least one product,
PTL[3] can be stated as

PTL[3] : Given n products with { (r i,d i),i= 1,2,
…, n }, find an optimal partition, P*(3) = {C*1,C*2,C*3}
such that we

Minimize Z= (R1D2-D1R2)+(R2D3-D2R3)
 +(R1D3-D1R3)
subject to |C k| ≥ 1 for k=1, 2, 3

Dk = ∑
i∈Ck
d i for k=1, 2, 3

Rk = ∑
i∈Ck
r i for k=1, 2, 3

3. Basic Properties of PTL[3]

3.1 A Necessary Condition
In order to facilitate our analysis, define PTL[K] to

be the K-class-based dedicated linear storage problem
and define P*(K) or {C*1,C*2,…,C*K} to be an
optimal solution to PTL[K]. Let CAI(N1,N2) be

∑
N2

i=N1
d i/ ∑

N2

i=N1
r i.

Yang(2003) analyzed PTL[2] and derived a nece-
ssary and sufficient condition to PTL[2]. For
convenience, we state his result in Proposition 1 as
follows.

Proposition 1. P*(2) is optimal to PTL[2] if and
only if P*(2) satisfies
 PAI(i 1)≥CAI(1,n) > PAI(i 2)
where i k∈C*k for k=1, 2.

Proposition 1 implies that if we take products by
PAI-nonincreasing order and if we assign the first N1
products, each PAI value of which is greater than or
equal to CAI(1,n), to C*1 and the remaining products
to C*2, then {C*1,C*2} is optimal. In other words, P*(2)
is one of the partitions based on a PAI-nonincreasing
ordering.

The natural question will be whether P*(K) is one
of the partitions based on a PAI-nonincreasing
ordering or not. In what follows, we prove a necessary
condition that P*(3) is also one of the partitions based
on a PAI-nonincreasing ordering. From now on, we
assume that a PAI-nonincreasing ordering is given as
O = (1,2,…,n). Given O, define any candidate solu-
tion to PTL[3] as X(3) = (N 1,N2) where Nk denotes
the number of products assigned to classes 1 through k
for k = 1, 2, 3.

Proposition 2. (i) If P*(3) is optimal to PTL[3],
then P*(3) satisfies
 PAI(i 1)≥CAI(1,N*2) > PAI(i 2)
 ≥CAI(N*1+1,n) > PAI(i 3)

 where i k∈C*k for k=1, 2, 3.
(ii) P*(3) is one of the partitions based on a
PAI-nonincreasing ordering.

Optimization of a 3-Class-based Dedicated Linear Storage System 193

Proof : Applying Proposition 1 to classes C*1 and
C*2, for i 1∈C*1, i 2∈C*2, we have

PAI(i 1)≥CAI(1,N
*
2) > PAI(i 2) (6)

Similarly, applying Proposition 1 to classes C*2 and
C*3, for i 2∈C*2, i 3∈C*3, we have

PAI(i 2)≥CAI(N
*
1+1,n) > PAI(i 3) (7)

If both Eq.(6) and Eq.(7) do not hold, E(SC3) can
be further reduced by swapping two products which
violate either Eq.(6) or Eq.(7). This is a contradiction
to that P*(3) is optimal. Hence both Eq.(6) and
Eq.(7) hold. By rearranging products in each class by
PAI-nonincreasing order, finally P*(3) will be one of
the partitions based on a PAI-nonincreasing ordering.
This completes the proof.

Proposition 2 implies that P*(K) is also one of the
partitions based on a PAI-nonincreasing ordering.
Hence, P*(K) can be obtained by enumerating all the
possible partitions based on a PAI-nonincreasing
ordering.

 Now, consider PTL[3]. In order to find a P*(3), it
is enough to enumerate (N 1,N2). The total number of
candidate solutions will be (n-1)(n-2)

2
 since the

number of candidate solutions given N1 is (n-N1-1)
where 1≤N1≤(n-2). That is, the total enumeration
requires O(n2). However, the total enumeration can
be further reduced by introducing “a conditional local
optimal solution” as follows.

3.2 Conditional Local Optimal Solution
Suppose that the first N1 products of a PAI-

nonincreasing ordering have been assigned to class 1.
Then, N2 can be any value such that N1+1≤N2
≤(n-1). The next question will be “What value of
N2 gives the minimum E(SC3) given N1?” This

question corresponds to finding a local optimal solu-
tion from a set of solutions;

{ (N1,N1+1),(N1,N1+2),…,(N1,n-1)}

Clearly the minimization of E(SC3) given N1 is
equivalent to solving a 2-class-based dedicated linear
storage problem with the last (n-N1) products of the
PAI-nonincreasing ordering. Let (N 1,Nc2(N 1)) be the
local optimal solution given N1. Then from Proposi-
tion 1, Nc2(N 1) can be determined such that

PAI(Nc2(N1))≥CAI(N1+1,n) > PAI(N
c
2(N1)+1)

(8)

Similarly, the minimization of E(SC3) given the
last (n-N2) products of a PAI-nonincreasing order-
ing assigned to class 3 is equivalent to solving a
2-class-based dedicated linear storage problem with
the first N2 products of the PAI-nonincreasing order-
ing. Let (Nc1(N 2),N2) be the local optimal solution
given N2. Then, from Proposition 1, Nc1(N2) can be
determined such that

PAI(Nc1(N2))≥CAI(1,N2) > PAI(N
c
1(N2)+1) (9)

Hence, in order to find a P*(3), it suffices to
enumerate all the local optimal solutions in either set
E1 or set E2 as follows:

E1= { (N1,N
c
2(N 1)), N1=1,…,(n-2)} (10)

E2= { (N
c
1(N 2),N2), N2=2,…,(n-1)} (11)

Now, we prove that Nc2(N*1) is N*2, and that
Nc1(N

*
2) is N*1.

Property 1. Given an O,
(i) Nc2(N*1)= N*2
(ii) Nc1(N*2)= N*1

Proof : (i) Since PAI(Nc2(N*1))≥CAI(N*1+1,n)
(From Eq.(8))

 > PAI(N*2+1) (From Proposition 2, (i)),
we have

Nc2(N
*
1)≤N

*
2

(12)

Similarly, since PAI(N*2)≥CAI(N*1+1,n) (From
Proposition 2, (i)),

 > PAI(Nc2(N*1)+1) (From Eq.(8)
we have

N*2≤N
c
2(N

*
1) (13)

Therefore, from Eq.(12) and Eq.(13), Nc2(N*1) = N*2.
In the similar manner, (ii) can be proved. This
completes the proof.

3.3 Lower and Upper Bounds of N*1
If a lower and an upper bounds of N*1 are available,

we can further reduce the enumeration. Before we

194 Moonhee Yang․Leon F. McGinnis

derive a lower and an upper bounds on N*1, we need
the following property.

Property 2. Given an O,
(i) Nc2(N1) is a nondecreasing function of N1.
(ii) Nc1(N2) is a nondecreasing function of N2.

Proof : (i) It is enough to prove that Nc2(N1)≤Nc2
(N 1+1). Since
PAI(N

c
2(N1))≥CAI(N1+1,n) (From Eq.(8))

 ≥CAI(N1+2,n)
 > PAI(Nc2(N1+1)+1)(From Eq.(8)),

we have PAI(Nc2(N1)) > PAI(Nc2(N1+1)+1), i.e.,
Nc2(N1)≤N

c
2(N1+1). In the similar manner, (ii) can

be proved. This completes the proof.

 Now, consider the following property for a lower
and an upper bounds of N*1. Let Lk and Uk be a
lower and an upper bounds of N*k for k=1, 2
respectively.

Property 3. Given an O, L1 and U1 can be
obtained by solving the equations below:
(i) PAI(L 1)≥CAI(1,Nc2(1)) > PAI(L1+1)
(ii) U1=Nc1(n-1)

Proof: (i) Since a possible minimum value of L1 is
1, Nc2(1)≤Nc2(L 1)≤N*2. That is, a possible minimum
value of N*2 is Nc2(1). Using Proposition 2, (i), we
can obtain L1 such that

PAI(L1)≥CAI(1,N
c
2(1)) > PAI(L 1+1) (14)

(ii) Since a possible maximum value of U2 is (n-1),
 Nc1(n-1) can be an upper bound of N*1. In a formal
way, since N*2≤U2 and Nc1(N2) is a nondecreasing
function of N2, we have

Nc1(N
*
2)≤N

c
1(U2) (15)

Since N*1 = Nc1(N*2) from Property 1, (ii), and a
possible maximum value of U2 is (n-1), it follows that

Nc1(N
*
2) = N

*
1≤N

c
1(U2)≤N

c
1(n-1) (16)

Thus, U1 can be obtained from Eq.(16) as

U1=N
c
1(n-1) (17)

This completes the proof.

4. An Exact Algorithm and an Example

4.1 Exact Algorithm
Based on Proposition 2 and properties proved above,

an efficient exact algorithm, ALGPTL[3], which
solves PTL[3], can be constructed as follows:

ALGPTL[3]
Step 1. (Initialization Phase)
 Take products by PAI-nonincreasing order.
 E(SC*3)← big value
 Compute (L 1,U1) using Property 3.
Step 2. (Optimization Phase)
 For N1= L1 to U1, do
 Begin
 Find Nc2(N1) such that PAI(Nc2(N1))≥CAI

 CAI(N1+1,n) > PAI((Nc2(N1)+1)
 Compute E(SC3) using (N 1,Nc2(N 1))
 If E(SC3) < E(SC*3), then E(SC*3)←

 E(SC3) and (N*1,N*2)← (N 1,Nc2(N 1))
 End

Proposition 3. ALGPTL[3] solves PTL[3] in
O(n⌈ log n⌉).

Proof: Since ALGPTL[3] enumerates all the local
optimal solutions given N1 such that L1≤N1≤U1,
ALGPTL[3] solves PTL[3]. Now, Step 1 requires
O(n⌈ log n⌉), the maximum number of iterations

of Step 2 is O(n) and finding Nc2(N1) requires
O(⌈ log n⌉) since a PAI-nonincreasing ordering is

given. It follows that Step 2 requires O(n⌈ log n⌉).
Therefore the time complexity of ALGPTL[3] is
O(n⌈ log n⌉). This completes the proof.

4.2 An Example and Additional Comments
Suppose that the input data are given as shown in

<Table 2> and t j= j for j=1, …, 161. Given N1=1,
E(SC3) changes depending on the value of N2 as

shown in <Table 3>. It can be clearly observed in
<Figure 2> that E(SC3) decreases until N2= 6 and
increases after N2= 6, and that E(SC3) given N1= 1
is minimized when N2= 6, i.e., Nc2(1)= 6. In the
similar manner, changing the value of N1 from 1 to 8,

Optimization of a 3-Class-based Dedicated Linear Storage System 195

Table 2. Input Data { (r i,d i)}

Product r i d i PAI i Product r i d i PAI i

1 5 3 0.6000 6 20 4 0.2000
2 15 4 0.2670 7 12 2 0.1670
3 20 5 0.2500 8 7 1 0.1430
4 10 2 0.2000 9 7 1 0.1430
5 15 3 0.2000 10 50 6 0.1200

Figure 1. Local optimal solution given N1 = 1.

Table 4. Local optimal solutions given N1 = 1, 2, ..., 8

N1 Nc2(N1) D1 D2 D3 R1 R2 R3 E(SC3)

1 6 3 18 10 5 80 76 133.0968
2 6 7 14 10 20 65 76 132.2903
3* 7* 12 9 10 40 45 76 131.6774*
4 7 14 9 8 50 47 64 132.8387
5 7 17 6 8 65 32 64 134.5807
6 9 21 4 6 85 26 50 136.5161
7 9 23 2 6 97 14 50 139.0323
8 9 24 1 6 104 7 50 141.0968

we can obtain the corresponding value, Nc2(N1), to
N1 as shown in the second column of <Table 4>.

Note that Nc2(N1) is a nondecreasing function of N1
which was proved in Property 2. From the table, we
have P*(3) = (N*1,N*2)= (3, 7).

As stated in ALGPTL[3], we take products by PAI-
nonincreasing order as shown in <Table 2>, and assign
any big value to E(SC*3). Using Property 3, (ii), we
have U1 = 3 because Nc1(9) = 3. Note that PAI6 = 0.2
> CAI(2,10) = 0.1795 > PAI7 = 0.1670 and that
PAI3 = 0.25 > CAI(1, 9) = 0.2252 > PAI4 = 0.2.

Since Nc2(1) = 6 and PAI3 = 0.25 > CAI(1,6) =
0.2471 > PAI4 = 0.2, we have L1 = 3. Note that N*1
= 3 in this example since L1=U1.

Since PAI7 = 0.1670 > CAI(4, 10) = 0.1570 > PAI8
= 0.1430, N*2=Nc2(3) = 7. Thus X*(3) = (3, 7), i.e.,
we assign products 1, 2 and 3 to class 1 and products
4, 5, 6 and 7 to class 2 and the remaining products to
class 3, which gives E(SC3) = 131.6774.

Table 3. E(SC3) depending on N2 given N1 = 1

N2 E(SC3) N2 E(SC3)

2 144.8387 6* 133.0968*
3 137.7419 7 133.8710
4 136.7097 8 135.1613
5 135.1613 9 136.4516

Figure 2. E(SC3) given N1 = 1, 2, ..., 8 from
 the example.

196 Moonhee Yang․Leon F. McGinnis

5. Conclusions

In this paper, we introduce a 3-class-based dedicated
linear storage problem, PTL[3], for determining an
optimal 3-class-based dedicated linear storage layout
in a class of unit load storage systems.

We analyze PTL[3] to derive a fundamental property
that an optimal solution to PTL[3] is one of the
partitions based on the PAI-nonincreasing ordering.
Using the property and partial enumeration, we
construct an efficient exact algorithm, ALGPTL[3],
with O(n⌈ log n⌉) for solving PTL[3]. Our algo-
rithm could be utilized to construct a heuristic
algorithm for solving a 3-class-based dedicated storage
problem, which does not assume the linearity of the
one-way travel time.

Our strong conjectures are that Proposition 2 could
be a sufficient condition and that there might exist a
greedy algorithm for PTL[3] like that for PTL[2].
These conjectures can be further investigated.

References

Bozer, Y. A. and Cho, M. S. (1998), Throughput Performance of
Automated Storage/Retrieval Systems under Stochastic
Demand, Working paper, The University of Michigan, Ann
Arbor, MI, 48, 109-2117.

Chang, D. T., Wen, U. P., and Lin, J. T. (1995), The Impact of
Acceleration Deceleration on Travel Time Models for
Automated Storage-Retrieval Systems, IIE Transactions, 27(1),
108-111.

Cho, M. S. and Bozer, Y. A. (2001), Storage Capacity Estimation for
Automated Storage/Retrieval Systems under Stochastic
Demand, Journal of Korean Institute of Industrial Engineers,
27(2), 169-175.

Hall, N. G., (1987) “A Comparison of Inventory Replenishment
Heuristics for Minimizing Maximum Storage”, Ohio state
University, Working paper.

Hausman, W. H., Schwartz, L. B., and Graves, S. C. (1976), Optimal
Storage Assignment in Automatic Warehousing Systems,
Management Science, 22(6), 629-638.

Lee, M. K. (1998), An Approach to Determining Storage Capacity
of an Automated Storage/Retrieval System under Full Turnover
Based Policy, Journal of Korean Institute of Industrial
Engineers, 24(4), 579-589.

Tompkins, J. A. and White, J. A. (1984), Facilities Planning, John
Wiley and Sons Inc., NY., 335-338.

Yang, M. (2003), Analysis and Optimization of a 2-class-based
Dedicated Storage System, Journal of the Korea Institute of
Industrial Engineers, 29(3), 222-229.

