DOI QR코드

DOI QR Code

Purification and Characterization of an Acid Deoxyribonuclease from the Cultured Mycelia of Cordyceps sinensis

  • Ye, Maoqing (Department of Biochemistry, College of Life Sciences, Wuhan University) ;
  • Hu, Zheng (Hubei Province Key Laboratory of Industrial Microbiology, Hubei Polytechnic University) ;
  • Fan, Ying (Department of Biochemistry, College of Life Sciences, Wuhan University) ;
  • He, Ling (Department of Biochemistry, College of Life Sciences, Wuhan University) ;
  • Xia, Fubao (Hubei Province Key Laboratory of Industrial Microbiology, Hubei Polytechnic University) ;
  • Zou, Guolin (Department of Biochemistry, College of Life Sciences, Wuhan University)
  • Published : 2004.07.31

Abstract

A new acid deoxyribonuclease (DNase) was purified from the cultured mycelia of Cordyceps sinensis, and designated CSDNase. CSDNase was purified by $(NH_4)_2SO_4$ precipitation, Sephacryl S-100 HR gel filtration, weak anion-exchange HPLC, and gel filtration HPLC. The protein was single-chained, with an apparent molecular mass of ca. 34 kDa, as revealed by SDS-PAGE, and an isoelectric point of 7.05, as estimated by isoelectric focusing. CSDNase acted on both double-stranded (ds) and single- stranded (ss) DNA, but preferentially on dsDNA. The optimum pH of CSDNase was pH 5.5 and its optimum temperature 55. The activity of CSDNase was not dependent on divalent cations, but its enzymic activity was inhibited by high concentration of the cation: $MgCl_2$ above 150 mM, $MnCl_2$ above 200 mM, $ZnCl_2$ above 150 mM, $CaCl_2$ above 200 mM, NaCl above 300 mM, and KCl above 300 mM. CSDNase was found to hydrolyze DNA, and to generate 3-phosphate and 5-OH termini. These results indicate that the nucleolytic properties of CSDNase are essentially the same as those of other well-characterized acid DNases, and that CSDNase is a member of the acid DNase family. To our knowledge, this is the first report of an acid DNase in a fungus.

Keywords

References

  1. Anai, M., Muta, A. and Umeno, M. (1983) Purification and properties of an acid deoxyribonuclease from small intestinal mucosa. J. Biochem. 94, 339-344.
  2. Appierto, V., Bardella, L., Vijayasarathy, C., Avadhani, N., Sgaramella, V. and Biunno, I. (1997) Functional characterization of human DNase-like protein encoded by a gene positioned in Xq28. Gene 188, 119-122. https://doi.org/10.1016/S0378-1119(96)00794-9
  3. Baker, K.P., Baron, W.F., Henzel, W.J. and Spencer, S.A. (1998) Molecular cloning and characterization of human and murine DNase II. Gene 215, 281-289. https://doi.org/10.1016/S0378-1119(98)00280-7
  4. Barry, M. A. and Eastman, A. (1993) Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch. Biochem. Biophys. 300, 440-450. https://doi.org/10.1006/abbi.1993.1060
  5. Bernardi, G. (1971) Spleen acid deoxyribonuclease. in The Enzymes, Boyer, P. D. (ed.), pp. 271-287, Academic Press, New York, USA.
  6. Bernardi, G., Appella, E. and Zito, R. (1965) Studies on acid deoxyribonuclease. III. Physical and chemical properties of hog spleen acid deoxyribonuclease. Biochemisty 4, 1725-1729. https://doi.org/10.1021/bi00885a006
  7. Blank, A., Sugiyama, R. H. and Dekker, C. A. (1982) Activity staining of nucleolytic enzymes after sodium dodecyl sulfatepolyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal. Biochem. 120, 267-275. https://doi.org/10.1016/0003-2697(82)90347-5
  8. Campbell, V. W. and Jackson, D. A. (1980) The effect of divalent cations on the mode of action of DNase I: The initial reaction products produced from covalently closed circular DNA. J. Biol. Chem. 255, 3726-3735.
  9. Catcheside, D.G. and Holmes, B. (1947) The action of enzymes on chromosomes. Symp. Soc. Exp. Biol. 1, 225-231.
  10. Chen, L.Y., Ho, H. C., Tsai, Y. C. and Liao, T. H. (1993) Deoxyribonuclease of Syncephalastrum racemosum enzymatic properties and molecular structure. Arch. Biochem. Biophys. 303, 51-56. https://doi.org/10.1006/abbi.1993.1254
  11. Conneely, A.M., Campbell. G.R., and Winder, F.G. (1976) Purification of a deoxyribonuclease from Aspergillus nidulans. Biochem. Soc. Trans. 4, 879-881.
  12. Cunningham, L. and Laskowski, M. (1953) Presence of two different desoxyribonucleodepolymerases in veal kidney. Biochem. Biophys. Acta. 11, 590-591. https://doi.org/10.1016/0006-3002(53)90104-8
  13. Deshpande, R. A., Kumar, A. R., Khan, M. I. and Shankar, V. (2001) Ribonuclease rs from Rhizopus stolonifer: lowering of optimum temperature in the presence of urea. Biochim. Biophys. Acta 1545, 13-19. https://doi.org/10.1016/S0167-4838(00)00256-9
  14. Dulaney, J. T. and Touster, O. (1972) Isolation of deoxyribonuclease II of rat liver lysosomes. J. Biol. Chem. 247, 1424-1432.
  15. Harosh, I., Binninger, D. M., Harris, P. V., Mezzina, M. and Boyd, J. B. (1991) Mechanism of action of deoxyribonuclease II from human lymphoblasts. Eur. J. Biochem. 202, 479-484. https://doi.org/10.1111/j.1432-1033.1991.tb16397.x
  16. Hsu, T. H., Shiao, L. H., Hsieh, C. Y. and Chang, D. M. (2002) A comparison of the chemical composition and bioactive ingredients of the Chinese medicinal mushroom DongChongXiaCao, its counterfeit and mimic, and fermented mycelium of Cordyceps sinensis. Food Chemistry 78, 463-469. https://doi.org/10.1016/S0308-8146(02)00158-9
  17. Ikeda, S. and Takata N. (2002) Deoxyribonuclease II purified from Euglena gracilis SM-ZK, a chloroplast-lacking mutant: comparison with porcine with porcine spleen deoxyribonuclease II. Comp. Biochem. and physiol. 131, 519-525. https://doi.org/10.1016/S1096-4959(02)00026-X
  18. Ito, K., Minamiura, N. and Yamamoto, T. (1984) Human Urine DNase I: Immunological identity with human pancreatic DNase I, and enzymic and proteochemical properties of the enzyme. J. Biochem. 95, 1399-1406.
  19. Kevin, P. B., Will, F. B., William, J. H. and Steven A. S. (1998) Molecular cloning and characterization of human and murine DNase II. Gene 215, 281-289. https://doi.org/10.1016/S0378-1119(98)00280-7
  20. Kitamura, A., Kouroku, Y., Onoue, M., Kimura, S., Takenouchi, M. and Sakaguchi, K. (1997) A new meiotic endonuclease from Coprinus meiocytes. Biochim. Biophys. Acta 1342, 205-216. https://doi.org/10.1016/S0167-4838(97)00103-9
  21. Kunitz, M. (1950) Crystalline desoxyribonuclease: Isolation and general properties; a spectrophotometric method for the measurement of desoxyribonuclease activity. J. Gen. Physiol. 33, 349-362. https://doi.org/10.1085/jgp.33.4.349
  22. Laemmli, U. K. and Favre, M. (1973) Gel electrophoresis of protein. J. Mol. Biol. 80, 575-599. https://doi.org/10.1016/0022-2836(73)90198-8
  23. Lesca, P. (1975) Protein inhibitor of acid deoxyribonucleases; Improved purification procedure and properties. J. Biol. Chem. 254, 116-123.
  24. Liao, T. H. (1985) The subunit structure and active site sequence of porcine spleen deoxyribonuclease. J. Biol. Chem. 260, 10708-10713.
  25. Liao, T. H., Liao, W. C., Chang, H. C. and Lu, K. S. (1989) Deoxyribonuclease II purified from the isolated lysosomes of porcine spleen and from porcine liver homogenates. Comparison with deoxyribonuclease II purified from porcine spleen homogenates. Biochim. Biophys. Acta 1007, 15-22. https://doi.org/10.1016/0167-4781(89)90124-3
  26. Lu, B. C., Wong, W., Fannibg, L. and Sakaguchi, K. (1988) Purification and characterization of an endonuclease from fruiting caps of basidiomycete Coprinus cinereus. Eur. J. Biochem. 174(4), 725-732. https://doi.org/10.1111/j.1432-1033.1988.tb14157.x
  27. Moore, S. (1981) Pancreatic DNase. in The Enzymes, Vol. 14, Boyer, P. D. (ed.), pp. 281-296, Academic Press, New York, USA.
  28. Schomburg, D. and Salzmann, M. 1991. DNase II. in Enzyme Handbook, vol. 3. Class 3: Hydrolases, pp. 1-6, Springer, Heidelberg, Denmark.
  29. SteinKraus, D.C. and Whitfield, J.B. (1994) Chinese caterpillar fungus and world record runners. American Entomologist 40, 235. https://doi.org/10.1093/ae/40.4.235
  30. Sun, H., Zhao, C. G., Tong, X. and Qi, Y. P. (2003) A lectin with mycelia differentiation and antiphytovirus activities from the edible mushroom Agrocybe aegerita. J. Biochem. Mol. Biol 36, 214-222. https://doi.org/10.5483/BMBRep.2003.36.2.214
  31. Taskeshita, H., Yasuda, T., Iida, R., Nakajima, T., Hosomi, O., Nakashima, Y., Mori, S., Nomoto, H. and Kishi, K. (1998) Identification of the three non-identical subunits constituting human deoxyribonuclease II. FEBS lett. 440, 239-242. https://doi.org/10.1016/S0014-5793(98)01456-2
  32. Wang, H. and Ng, T. B. (2001) Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds. Biochem. Biophys. Res. Commun. 289, 120-124. https://doi.org/10.1006/bbrc.2001.5963
  33. Yamanaka, M., Tsubota, Y., Anai, M., Ishimatsu, K., Okumura, M., Katsuki, S. and Takagi, Y. (1974) Purification and properties nof acid deoxyribonuclease of human gastric mucosa and cervix uteri. J. Biol. Chem. 249, 3884-3889.
  34. Yasuda, T., Nadano, D., Awazu, S. and Kishi, K. (1992) Human urine deoxyribonuclease II (DNase II) isoenzymes: a novel immunoaffinity purification, biochemical multiplicity, genetic heterogeneity and broad distribution among tissues and body fluids. Biochim. Biophys. Acta 1119, 185-193. https://doi.org/10.1016/0167-4838(92)90390-Y
  35. Zhu, J. S., Halpern, G. M. and Jones, K. (1998a) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: Part I. J. Altern Complement Med. 4, 289-303. https://doi.org/10.1089/acm.1998.4.3-289
  36. Zhu, J. S., Halpern, G. M. and Jones, K. (1998b) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: Part II. J. Altern Complement Med. 4, 429-457. https://doi.org/10.1089/acm.1998.4.429

Cited by

  1. Pharmacological actions ofCordyceps, a prized folk medicine vol.57, pp.12, 2005, https://doi.org/10.1211/jpp.57.12.0001
  2. Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats vol.72, pp.6, 2006, https://doi.org/10.1007/s00253-006-0411-9
  3. Extracellular DNase activity of Cryptococcus neoformans and Cryptococcus gattii vol.27, pp.1, 2010, https://doi.org/10.1016/j.riam.2009.11.004
  4. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin vol.4, pp.1, 2014, https://doi.org/10.1007/s13205-013-0121-9
  5. The phylogeny and evolution of deoxyribonuclease II: An enzyme essential for lysosomal DNA degradation vol.47, pp.2, 2008, https://doi.org/10.1016/j.ympev.2007.11.033
  6. A novel extracellular protease with fibrinolytic activity from the culture supernatant ofCordyceps sinensis: purification and characterization vol.21, pp.12, 2007, https://doi.org/10.1002/ptr.2246
  7. Purification and characterization of an antitumor protein with deoxyribonuclease activity from edible mushroom Agrocybe aegerita vol.56, pp.11, 2012, https://doi.org/10.1002/mnfr.201200316
  8. The Chemical Constituents and Pharmacological Actions ofCordyceps sinensis vol.2015, 2015, https://doi.org/10.1155/2015/575063
  9. Effects of heat on the biological activity of wild Cordyceps sinensis vol.2, pp.1, 2015, https://doi.org/10.1016/j.jtcms.2014.12.005