DOI QR코드

DOI QR Code

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin (Division of Life Sciences and Silver Biotechnology Research Center, Hallym University) ;
  • Lee, Se-Hee (Division of Life Sciences and Silver Biotechnology Research Center, Hallym University) ;
  • Lee, Yong-Jin (Division of Life Sciences and Silver Biotechnology Research Center, Hallym University) ;
  • Park, Hyoung-Sook (Department of Environmental Engineering, Hanseo University) ;
  • Bunger, Rolf (Physiology and Molecular/Cell Biology, Uniformed Services University of Health Sciences) ;
  • Kang, Young-Hee (Division of Life Sciences and Silver Biotechnology Research Center, Hallym University)
  • Published : 2004.03.31

Abstract

We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

Keywords

References

  1. Abbink, E. J., Tack, C. J. and Smits, P. (2001) Vascular effects of metabolic inhibition by 2-deoxy-D-glucose in human. J. Cardiovas. Pharmacol. 37, 94-100. https://doi.org/10.1097/00005344-200101000-00011
  2. Baker, M. A., Cerniglia, G. J. and Zaman, A. (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190, 360-365. https://doi.org/10.1016/0003-2697(90)90208-Q
  3. Bassenge, E., Sommer, O., Schwemmer, M. and Bunger, R. (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am. J. Physiol. 279, H2431-H2438.
  4. Becker, B. F., Gerlach, E. and Nees, S. (1985) The vascular endothelium: A survey of some newly evolving biochemical and physiological features. Basic Res. Cardiol. 80, 459-474. https://doi.org/10.1007/BF01907911
  5. Bergmeyer, H. U. (1974) Methods of Enzymatic Analysis, 2nd ed., Verlag Chemie Weinheim, Academic Press, New York, USA.
  6. Brown, J. (1962) Effects of 2-deoxyglucose on carbohydrate metabolism: review of the literature and studies in the rat. Metabolism 11, 1098-1111.
  7. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Methods enzymol. 52, 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  8. Carini, R., Parola, M., Dianzani, M. U. and Albano, E. (1992) Mitochondrial damage and its role in causing hepatocyte injury during stimulation of lipid peroxidation by iron nitriloacetate. Arch. Biochem. Biophys. 297, 110-118. https://doi.org/10.1016/0003-9861(92)90647-F
  9. Denizot, F. and Lang, R. (1986) Rapid colorimetric assay for cell growth and survival. Modification to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89, 271-277. https://doi.org/10.1016/0022-1759(86)90368-6
  10. Dobsak, P., Courderot-Masuyer, C., Zeller, M., Vergely, C., Laubriet Assem, M., Eicher, J. C., Teyssier, J. R., Wolf, J. E. and Rochette, L. (1999) Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia. J. Cardiovasc. Pharmacol. 34, 651-659. https://doi.org/10.1097/00005344-199911000-00005
  11. Ellis, E. A., Grant, M. B., Murray, F. T., Wachowski, M. B., Guberski, D. L., Kubilis, P. S. and Lutty, G. A. (1998) Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Radic. Biol. Med. 24, 111-120. https://doi.org/10.1016/S0891-5849(97)00202-5
  12. Greene, E. L. and Paller, M. S. (1992) Xanthine oxidase produces $O_2^-$ in posthypoxic injury of renal epithelial cells. Am. J. Physiol. 263, F251-F255.
  13. Gupta, A., Gupta, A., Datta, M. and Shukla, G. S. (2000) Cerebral antioxidant status and free radical generation following glutathione depletion and subsequent recovery. Mol. Cell. Biochem. 209, 55-61. https://doi.org/10.1023/A:1007000430394
  14. Halestrap, A. P., Kerr, P. M., Javadov, S. and Woodfield, K. Y. (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366, 79-94. https://doi.org/10.1016/S0005-2728(98)00122-4
  15. Herz, H., Blake, D. R. and Grootveld, M. (1997) Multicomponent investigations of the hydrogen peroxide- and hydroxyl radical scavenging antioxidant capacities of biofluids: the roles of endogenous pyruvate and lactate. Free Radic. Res. 26, 19-35. https://doi.org/10.3109/10715769709097781
  16. Kamat, J. P., Boloor, K. K. and Devasagayam, T. P. (2000) Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. Biochim. Biophys. Acta 1487, 113-127. https://doi.org/10.1016/S1388-1981(00)00088-3
  17. Kang, Y. H., Chung, S. J., Park, J. H. Y., Kang, I. J. and Bunger, R. (2001) Intramitochondrial pyruvate attenuates hydrogen peroxide-induced apoptosis in bovine pulmonary artery endothelium. Mol. Cell. Biochem. 216, 27-46.
  18. Kang, Y. H., Park, S. H., Lee, Y. J. Shin, H. K., Kang, J. S., Park, J. H. Y. and Bunger, R. (2002) Antioxidant ?-keto-carboxylate pyruvate protects low-density lipoprotein and atherogenic macrophages. Free Radic. Res. 36, 905-914. https://doi.org/10.1080/1071576021000005348
  19. Kashiwagi, A., Nishio, Y., Asahira, T., Ikebuchi, M., Harada, N., Tanaka, Y., Takagi, Y., Saeki, Y., Kikkawa, R. and Shigeta, Y. (1997) Pyruvate improves deleterious effects of high glucose on activation of pentose phosphate pathway and glutathione redox cycle in endothelial cells. Diabetes 46, 2088-2096. https://doi.org/10.2337/diabetes.46.12.2088
  20. Kehrer, J. P. and Lund, L. G. (1994) Cellular reducing equivalents and oxidative stress. Free Radic. Biol. Med. 17, 65-75. https://doi.org/10.1016/0891-5849(94)90008-6
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  22. Mallet, R. T. and Sun, J. (1999) Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Cardiovasc. Res. 42, 149-161. https://doi.org/10.1016/S0008-6363(98)00300-9
  23. Martin, B. J., Lasley, R. D., Bunger, R. and Mentzer jr. R. M. (1998) Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes. Am. J. Physiol. 274, H8-H17.
  24. Mohazzab-H, K. M., Kaminski, P. M. and Wolin, M. S. (1997) Lactate and $PO_2$ modulate superoxide anion production in bovine cardiac myocytes. Potential role of NADH oxidase. Circulation 96, 614-620. https://doi.org/10.1161/01.CIR.96.2.614
  25. Mongan, P. D., Fontana, J. L., Chen, R. and Bunger, R. (1999) Intravenous pyruvate prolongs survival during hemorrhagic shock in swine. Am. J. Physiol. 277, H2253-H2263.
  26. Nishida, T., Shibata, H., Koseki, M., Nakao, K., Kawashima, Y., Yoshida, Y. and Tagawa, K. (1987) Peroxidative injury of the mitochondrial respiratory chain during reperfusion of hypothermic rat liver. Biochim. Biophys. Acta 890, 82-88. https://doi.org/10.1016/0005-2728(87)90071-5
  27. Park, E. M., Park, J. S., Kim, Y. J., Sung J. S., Hwang, T. S., Kim, W. C., Han, M. Y. and Park, Y. M. (2001) Role of oxidative stress in the radiation-induced lung pathogenesis in mice. J. Biochem. Mol. Biol. 34, 544-550.
  28. Ramakrishnan, N., Chen, R., McClain, D. E. and Bunger, R. (1998) Pyruvate prevents hydrogen peroxide-induced apoptosis. Free Radic. Res. 29, 283-295. https://doi.org/10.1080/10715769800300321
  29. Rice-Evans, C. and Burdon, R. (1993) Free-radical lipid interactions and their pathological consequences. Prog. Lipid Res. 32, 71-110. https://doi.org/10.1016/0163-7827(93)90006-I
  30. Scholz, T. D., Laughlin, M. R., Balaban, R. S., Kupriyanov, V. V. and Heineman, F. W. (1995) Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am. J. Physiol. 268, H82-H91.
  31. Tejero-Taldo, M. I., Caffrey, J. L., Sun, J. and Mallet, R. T. (1999) Antioxidant properties of pyruvate mediate its potentiation of ?- adrenergic inotropism in stunned myocardium. J. Mol. Cell. Cardiol. 31, 1863-1872. https://doi.org/10.1006/jmcc.1999.1020
  32. Voogd, A., Slutier, W. and Kosrer, J. F. (1994) The increased susceptibility to hydrogen peroxide of the (post)-ischemic rat heart is associated with the magnitude of the low molecular weight iron pool. Free Radic. Biol. Med. 16, 453-458. https://doi.org/10.1016/0891-5849(94)90122-8
  33. Yoon, S. J., Park, J. E., Yang, J. H. and Park, J. W. (2002) OxyR Regulon controls lipid peroxidation-mediated oxidative stress in Escherichia coli. J. Biochem. Mol. Biol. 35, 297-301. https://doi.org/10.5483/BMBRep.2002.35.3.297
  34. Zhou, Z., Lasley, R. D., Hegge, J. O., Bunger, R. and Mentzer jr., R. M. (1995) Myocardial stunning: A therapeutic conundrum. J. Thoracic. Cardiovasc. Surg. 110, 1391-1401. https://doi.org/10.1016/S0022-5223(95)70062-5

Cited by

  1. Perinatal hypoxia induces a long-lasting increase in unstimulated gaba release in rat brain cortex and hippocampus. The protective effect of pyruvate vol.58, pp.1, 2011, https://doi.org/10.1016/j.neuint.2010.10.004
  2. Pyruvate prevents aging of mouse oocytes vol.138, pp.2, 2009, https://doi.org/10.1530/REP-09-0122
  3. Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of transient and permanent focal cerebral ischemia vol.26, pp.1, 2007, https://doi.org/10.1016/j.nbd.2006.12.007
  4. Endothelial cells and cancer cells vol.22, pp.3, 2015, https://doi.org/10.1097/MOH.0000000000000138
  5. Identification of cultivation-independent markers of human endothelial cell senescence in vitro vol.8, pp.4, 2007, https://doi.org/10.1007/s10522-007-9082-x
  6. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns vol.40, pp.4, 2014, https://doi.org/10.1016/j.burns.2013.09.030
  7. Metabolism of stromal and immune cells in health and disease vol.511, pp.7508, 2014, https://doi.org/10.1038/nature13312
  8. Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting vol.22, pp.7, 2015, https://doi.org/10.1111/micc.12229
  9. Comparison of Plasma Metabolite Concentrations and Lactate Dehydrogenase Activity in Dogs, Cats, Horses, Cattle and Sheep vol.31, pp.4, 2007, https://doi.org/10.1007/s11259-006-3482-2
  10. Targeting endothelial cell metabolism: new therapeutic prospects? vol.10, pp.2, 2015, https://doi.org/10.1007/s11515-015-1350-6
  11. Metabolic and Histologic Effects of Sodium Pyruvate Treatment in the Rat after Cortical Contusion Injury vol.26, pp.7, 2009, https://doi.org/10.1089/neu.2008.0771
  12. Recent advances in understanding lymphangiogenesis and metabolism vol.7, pp.2046-1402, 2018, https://doi.org/10.12688/f1000research.14803.1