DOI QR코드

DOI QR Code

Bacillus thuringiensis Cry4A and Cry4B Mosquito-larvicidal Proteins: Homology-based 3D Model and Implications for Toxin Activity

  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Uawithya, Panapat (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Leetachewa, Somphob (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Pornwiroon, Walairat (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Ounjai, Puey (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Kerdcharoen, Teerakiat (Department of Physics, Faculty of Science, Mahidol University) ;
  • Katzenmeier, Gerd (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Panyim, Sakol (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus)
  • Published : 2004.05.31

Abstract

Three-dimensional (3D) models for the 65-kDa activated Cry4A and Cry4B $\delta$-endotoxins from Bacillus thuringiensis subsp. israelensis that are specifically toxic to mosquito-larvae were constructed by homology modeling, based on atomic coordinates of the Cry1Aa and Cry3Aa crystal structures. They were structurally similar to the known structures, both derived 3D models displayed a three-domain organization: the N-terminal domain (I) is a seven-helix bundle, while the middle and C-terminal domains are primarily comprise of anti-parallel $\beta$-sheets. Circular dichroism spectroscopy confirmed the secondary structural contents of the two homology-based Cry4 structures. A structural analysis of both Cry4 models revealed the following: (a) Residues Arg-235 and Arg-203 are located in the interhelical 5/6 loop within the domain I of Cry4A and Cry4B, respectively. Both are solvent exposed. This suggests that they are susceptible to tryptic cleavage. (b) The unique disulphide bond, together with a proline-rich region within the long loop connecting ${\alpha}4$ and ${\alpha}5$ of Cry4A, were identified. This implies their functional significance for membrane insertion. (c) Significant structural differences between both models were found within domain II that may reflect their different activity spectra. Structural insights from this molecular modeling study would therefore increase our understanding of the mechanic aspects of these two closely related mosquito-larvicidal proteins.

Keywords

References

  1. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquito-larvicidal $\delta$-endotoxin gene of Bacillus thuringiensis var israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  2. Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1992) Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 94, 63-68. https://doi.org/10.1111/j.1574-6968.1992.tb05290.x
  3. Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1993) Effects on toxicity of eliminating a cleavage site in a predicted interhelical loop in Bacillus thuringiensis CryIVB deltaendotoxin. FEMS Microbiol. Lett. 111, 255-261.
  4. Aronson, A. I., Beckman, W. and Dunn, P. (1986) Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50, 1-24.
  5. Ballester, V., Granero, F., Tabashnik, B. E., Malvar, T. and Ferre, J. (1999) Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 65, 2503-2507.
  6. Becker, N. and Margalit, J. (1993) Use of Bacillus thuringiensis subsp. israelensis against mosquitoes and black flies; in Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, Entwistle, P. F., Cory, J. S., Bailey, M. J. and Higgs, S. (eds.), pp. 147-170, John Wiley and Sons, Chichester, UK.
  7. Burton, S. L., Ellar, D. J., Li, J. and Derbyshire, D. J. (1999) N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J. Mol. Biol. 287, 1101-1122.
  8. Carroll, J., Li, J. and Ellar, D. J. (1989) Proteolytic processing of a coleopteran-specific delta-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem. J. 261, 99-105.
  9. Chungjatupornchai, W., Hofte. H., Seurinck, J., Angsuthanasombat, C. and Vaeck, M. (1988) Common features of Bacillus thuringiensis toxins specific for Diptera and Lepidoptera. Eur. J. Biochem. 173, 9-16. https://doi.org/10.1111/j.1432-1033.1988.tb13960.x
  10. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
  11. Derbyshire, D. J., Ellar, D. J. and Li, J. (2001) Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr. D. Biol. Crystallogr. 57, 1938-1944. https://doi.org/10.1107/S090744490101040X
  12. de Maagd, R. A., Bravo, A. and Crickmore, N. (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 4, 193-199.
  13. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W. and English, L. (2001) Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D. Biol. Crystallogr. 57, 1101-1109. https://doi.org/10.1107/S0907444901008186
  14. Gazit, E., La Rocca, P., Sansom, M. S. and Shai, Y. (1998) The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95, 12289-12294. https://doi.org/10.1073/pnas.95.21.12289
  15. Gerber, D. and Shai, Y. (2000) Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 275, 23602-23607. https://doi.org/10.1074/jbc.M002596200
  16. Gray, W. R. (1997) Disulphide bonds between cysteine residues; in Protein Structure (A Practical Approach). 2nd ed., Creighton, T. E. (ed.), pp. 165-186, Oxford University Press Inc, New York, USA.
  17. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J.-L., Brousseau, R. and Cygler, M. (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
  18. Hofte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255.
  19. Jurat-Fuentes, J.-L. and Adang, M. J. (2001) Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 67, 323-329. https://doi.org/10.1128/AEM.67.1.323-329.2001
  20. Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the $\alpha$4-$\alpha$5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role of Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11-19. https://doi.org/10.1385/MB:24:1:11
  21. Knowles, B. H. (1994) Mechanism of action of Bacillus thuringiensis insecticidal $\delta$-endotoxins. Adv. Insect. Physiol. 24, 275-308. https://doi.org/10.1016/S0065-2806(08)60085-5
  22. Knowles, B. H. and Ellar, D. J. (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta endotoxin with difference insect specificity. Biochim. Biophys. Acta 924, 509-518. https://doi.org/10.1016/0304-4165(87)90167-X
  23. Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283-291. https://doi.org/10.1107/S0021889892009944
  24. Li, J., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 ${\AA}$ resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  25. Lee, M. K., Young, B. A. and Dean, D. H. (1995) Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem. Biophys. Res. Commun. 216, 306-312. https://doi.org/10.1006/bbrc.1995.2625
  26. Manavalan, P. and Johnson, W. C. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167, 76-85. https://doi.org/10.1016/0003-2697(87)90135-7
  27. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J.-L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000. https://doi.org/10.1074/jbc.274.45.31996
  28. Masson, L., Tabashnik, B. E., Mazza, A., Prefontaine, G., Potvin, L., Brousseau, R. and Schwartz, J.-L. (2002) Mutagenic analysis of a conserved region of domain III in the Cry1Ac toxin of Bacillus thuringiensis. Appl. Environ. Microbiol. 68, 194-200. https://doi.org/10.1128/AEM.68.1.194-200.2002
  29. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb.) 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  30. Nicholls, C. N., Ahmad, W. and Ellar, D. J. (1989) Evidence for two different types of insecticidal P2 toxins with dual specificity in Bacillus thuringiensis subspecies. J. Bacteriol. 171, 5141-5147.
  31. Nunez-Valdez, M.-E., Sanchez, J., Lina, L., Guereca, L. and Bravo, A. (2001) Structural and functional studies of $\alpha$-helix 5 region from Bacillus thuringiensis Cry1Ab $\delta$-endotoxins. Biochim. Biophys. Acta 1546, 122-133. https://doi.org/10.1016/S0167-4838(01)00132-7
  32. Ponder, J. W. and Richards, F. M. (1987) An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J. Comput. Chem. 8, 1016-24. https://doi.org/10.1002/jcc.540080710
  33. Pornwiroon, W., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2004) Aromaticity of Tyr-202 in the $\alpha$4-$\alpha$5 loop is essential for toxicity of the Bacillus thuringiensis Cry4A toxin. J. Biochem. Mol. Biol. 37, 292-297. https://doi.org/10.5483/BMBRep.2004.37.3.292
  34. Puntheeranurak, T., Leetachewa, S., Katzenmeier, G., Krittanai, C., Panyim, S. and Angsuthanasombat, C. (2001) Expression and biochemical characterization of the Bacillus thuringiensis Cry4B $\alpha$1-$\alpha$5 pore-forming fragment. J. Biochem. Mol. Biol. 34, 293-298.
  35. Puntheranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C., and Schwartz, J.-L. (2004) Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its $\alpha$1-$\alpha$5 fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792
  36. Rajamohan, F., Hussain, S. R., Cotrill, J. A., Gould, F. and Dean, D. H. (1996) Mutations at domain II, loop 3, of Bacillus thuringiensis CryIAa and CryIAb delta-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. J. Biol. Chem. 271, 25220-25226. https://doi.org/10.1074/jbc.271.41.25220
  37. Sander, C. and Schneider, R. (1991) Database of homologyderived protein structures and the structural meaning of sequence alignment. Proteins 9, 56-68. https://doi.org/10.1002/prot.340090107
  38. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  39. Schwartz, J.-L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. and Masson, L. (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397-402. https://doi.org/10.1016/S0014-5793(97)00626-1
  40. Smedley, D. P. and Ellar, D. J. (1996) Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology 142, 1617-1624. https://doi.org/10.1099/13500872-142-7-1617
  41. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187- 193.
  42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-82.
  43. Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in alpha 3 or alpha 4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825-832.
  44. Von Tersch, M. A., Slatin, S. L., Kulesza, C. A. and English, L. H. (1994) Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol. 60, 3711-3717.
  45. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52-56. https://doi.org/10.1016/0263-7855(90)80070-V
  46. Walters, F. S., Slatin, S. L., Kulesza, C. A. and English, L. H. (1993) Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196, 921-926. https://doi.org/10.1006/bbrc.1993.2337
  47. Ward, S. and Ellar, D. J. (1998) Cloning and expression of two homologous genes of Bacillus thuringiensis subsp. israelensis which encode 130-kilodalton mosquitocidal proteins. J. Bacteriol. 170, 727-735.
  48. Wynne, S. A., Crowther, R. A. and Leslie, A. G. W. (1999) The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3, 771-780. https://doi.org/10.1016/S1097-2765(01)80009-5

Cited by

  1. Effects of Mutations Within Surface-Exposed Loops in the Pore-Forming Domain of the Cry9Ca Insecticidal Toxin of Bacillus thuringiensis vol.238, pp.1-3, 2010, https://doi.org/10.1007/s00232-010-9315-9
  2. Homology Modeling Based Solution Structure of Hoxc8-DNA Complex: Role of Context Bases Outside TAAT Stretch vol.22, pp.6, 2005, https://doi.org/10.1080/07391102.2005.10507037
  3. Bacillus thuringiensis Cry4Ba toxin employs two receptor-binding loops for synergistic interactions with Cyt2Aa2 vol.435, pp.2, 2013, https://doi.org/10.1016/j.bbrc.2013.04.078
  4. Effects of the P20 protein from Bacillus thuringiensis israelensis on insecticidal crystal protein Cry4Ba vol.79, 2015, https://doi.org/10.1016/j.ijbiomac.2015.04.035
  5. Bacillus thuringiensis Cry4Aa insecticidal protein: Functional importance of the intrinsic stability of the unique α4–α5 loop comprising the Pro-rich sequence vol.1844, pp.6, 2014, https://doi.org/10.1016/j.bbapap.2014.03.003
  6. Functional characterizations of residues Arg-158 and Tyr-170 of the mosquito-larvicidal Bacillus thuringiensis Cry4Ba vol.47, pp.10, 2014, https://doi.org/10.5483/BMBRep.2014.47.10.192
  7. Bacillus thuringiensis subsp. israelensis and Its Dipteran-Specific Toxins vol.6, pp.4, 2014, https://doi.org/10.3390/toxins6041222
  8. Single-reversal charge in the β10-β11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. larvae vol.450, pp.2, 2014, https://doi.org/10.1016/j.bbrc.2014.06.090
  9. Two conformational states of the membrane-associated Bacillus thuringiensis Cry4Ba δ-endotoxin complex revealed by electron crystallography: Implications for toxin-pore formation vol.361, pp.4, 2007, https://doi.org/10.1016/j.bbrc.2007.07.086
  10. Functional assembly of 260-kDa oligomers required for mosquito-larvicidal activity of the Bacillus thuringiensis Cry4Ba toxin vol.68, 2015, https://doi.org/10.1016/j.peptides.2014.11.013
  11. Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin vol.445, pp.1, 2006, https://doi.org/10.1016/j.abb.2005.11.007
  12. Structural requirements of the unique disulphide bond and the proline-rich motif within the α4–α5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa δ-endotoxin vol.330, pp.2, 2005, https://doi.org/10.1016/j.bbrc.2005.03.006
  13. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment vol.191, pp.1, 2009, https://doi.org/10.1007/s00203-008-0421-3