References
- Aiba, H., Baba, T., Hayashi, K., Inada, T., Isono, K., Itoh, T., Kasai, H., Kashimoto, K., Kimura, S., Kitakawa, M. et al. (1996) A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 3, 363-377. https://doi.org/10.1093/dnares/3.6.363
- Allen, T. E., Herrgard, M. J., Liu, M., Qiu, Y., Glasner, J. D., Blattner, F. R. and Palsson, B. O. (2003) Genome-scale analysis of the uses of the Escherichia coli genome: modeldriven analysis of heterogeneous data sets. J. Bacteriol. 185, 6392-6399. https://doi.org/10.1128/JB.185.21.6392-6399.2003
- Arifuzzaman, M. (in preparation).
- Baba, T. (in preparation).
- Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. and Cullin, C. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329-3330. https://doi.org/10.1093/nar/21.14.3329
- Bergler, H., Hogenauer, G. and Turnowsky, F. (1992) Sequences of the envM gene and of two mutated alleles in Escherichia coli. J. Gen. Microbiol. 138, 2093-2100. https://doi.org/10.1099/00221287-138-10-2093
- Blattner, F. R., Plunkett, G., 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474. https://doi.org/10.1126/science.277.5331.1453
- Corbin, R. W., Paliy, O., Yang, F., Shabanowitz, J., Platt, M., Lyons, C. E., Jr, Root, K., McAuliffe, J., Jordan, M. I., Kustu, S., Soupene, E. and Hunt, D. F. (2003) Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc. Natl. Acad. Sci. USA 100, 9232-9237. https://doi.org/10.1073/pnas.1533294100
- Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645. https://doi.org/10.1073/pnas.120163297
- Edwards, J. S. and Palsson, B. O. (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. USA 97, 5528-5533. https://doi.org/10.1073/pnas.97.10.5528
- Ehrenberg, M., Elf, J., Aurell, E., Sandberg, R. and Tegner, J. (2003) Systems biology is taking off. Genome Res. 13, 2377-2380. https://doi.org/10.1101/gr.1763203
- Fiehn, O. (2002) Metabolomics--the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155-171. https://doi.org/10.1023/A:1013713905833
- Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N. and Willmitzer, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157-1161. https://doi.org/10.1038/81137
- Figeys, D., Gygi, S. P., Zhang, Y., Watts, J., Gu, M. and Aebersold, R. (1998) Electrophoresis combined with novel mass spectrometry techniques: powerful tools for the analysis of proteins and proteomes. Electrophoresis 19, 1811-1818. https://doi.org/10.1002/elps.1150191045
- Forster, J., Famili, I., Fu, P., Palsson, B. O. and Nielsen, J. (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253. https://doi.org/10.1101/gr.234503
- Fromont-Racine, M., Rain, J. C. and Legrain, P. (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat. Genet. 16, 277-282. https://doi.org/10.1038/ng0797-277
- Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M. et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147. https://doi.org/10.1038/415141a
- Goryanin, I., Hodgman, T. C. and Selkov, E. (1999) Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 15, 749-758. https://doi.org/10.1093/bioinformatics/15.9.749
- Gutierrez-Rios, R. M., Rosenblueth, D. A., Loza, J. A., Huerta, A. M., Glasner, J. D., Blattner, F. R. and Collado-Vides, J. (2003) Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res. 13, 2435-2443. https://doi.org/10.1101/gr.1387003
- Gygi, S. P., Rist, B. and Aebersold, R. (2000) Measuring gene expression by quantitative proteome analysis. Curr. Opin. Biotechnol. 11, 396-401. https://doi.org/10.1016/S0958-1669(00)00116-6
- Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K., Murata, T. et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 8, 11-22. https://doi.org/10.1093/dnares/8.1.11
- Herrgard, M. J., Covert, M. W. and Palsson, B. O. (2003) Reconciling gene expression data with known genome-scale regulatory network structures. Genome Res. 13, 2423-2434. https://doi.org/10.1101/gr.1330003
- Hill, C. W. and Harnish, B. W. (1981) Inversions between ribosomal RNA genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 78, 7069-7072.
- Hill, T. M. (1996) in Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhart. F. C. (ed.), ASM Press, Washington, USA.
- Horiuchi, T. (in preparation).
- Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A. et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531. https://doi.org/10.1093/bioinformatics/btg015
- Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429-5433.
- Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569-4574. https://doi.org/10.1073/pnas.061034498
- Itoh, T., Aiba, H., Baba, T., Hayashi, K., Inada, T., Isono, K., Kasai, H., Kimura, S., Kitakawa, M., Kitagawa, M. et al. (1996) A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 3, 379-392. https://doi.org/10.1093/dnares/3.6.379
- Itoh, T., Okayama, T., Hashimoto, H., Takeda, J., Davis, R. W., Mori, H. and Gojobori, T. (1999) A low rate of nucleotide changes in Escherichia coli K-12 estimated from a comparison of the genome sequences between two different substrains. FEBS Lett. 450, 72-76. https://doi.org/10.1016/S0014-5793(99)00481-0
- Kanehisa, M., Goto, S., Kawashima, S. and Nakaya, A. (2002) The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42-46. https://doi.org/10.1093/nar/30.1.42
- Kitagawa, M. M. H. (in preparation).
- Kolisnychenko, V., Plunkett, G., 3rd, Herring, C. D., Feher, T., Posfai, J., Blattner, F. R. and Posfai, G. (2002) Engineering a reduced Escherichia coli genome. Genome Res. 12, 640-647. https://doi.org/10.1101/gr.217202
- Koonin, E. V., Tatusov, R. L. and Rudd, K. E. (1995) Sequence similarity analysis of Escherichia coli proteins: functional and evolutionary implications. Proc. Natl. Acad. Sci. USA 92, 11921-11925. https://doi.org/10.1073/pnas.92.25.11921
- Kumar, A., Agarwal, S., Heyman, J. A., Matson, S., Heidtman, M., Piccirillo, S., Umansky, L., Drawid, A., Jansen, R., Liu, Y., Cheung, K. H., Miller, P., Gerstein, M., Roeder, G. S. and Snyder, M. (2002) Subcellular localization of the yeast proteome. Genes Dev. 16, 707-719. https://doi.org/10.1101/gad.970902
- Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. and Brown, E. L. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675-1680. https://doi.org/10.1038/nbt1296-1675
- Maharjan, R. P. and Ferenci, T. (2003) Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Anal. Biochem. 313, 145-154. https://doi.org/10.1016/S0003-2697(02)00536-5
- Mahillon, J. and Chandler, M. (1998) Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725-774.
- Mahillon, J., Leonard, C. and Chandler, M. (1999) IS elements as constituents of bacterial genomes. Res. Microbiol. 150, 675-687. https://doi.org/10.1016/S0923-2508(99)00124-2
- Masuda, N. and Church, G. M. (2003) Regulatory network of acid resistance genes in Escherichia coli. Mol. Microbiol. 48, 699-712. https://doi.org/10.1046/j.1365-2958.2003.03477.x
- Mendes, P. and Kell, D. B. (2001) MEG (Model Extender for Gepasi): a program for the modellingmodeling of complex, heterogeneous, cellular systems. Bioinformatics 17, 288-289. https://doi.org/10.1093/bioinformatics/17.3.288
- Mori, H., Isono, K., Horiuchi, T. and Miki, T. (2000) Functional genomics of Escherichia coli in Japan. Res Microbiol. 151, 121-128. https://doi.org/10.1016/S0923-2508(00)00119-4
- Nakata, A., Amemura, M. and Makino, K. (1989) Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553-3556.
- O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021.
- Oshima, T., Aiba, H., Baba, T., Fujita, K., Hayashi, K., Honjo, A., Ikemoto, K., Inada, T., Itoh, T., Kajihara, M. et al. (1996) A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 3, 137-155. https://doi.org/10.1093/dnares/3.3.137
- Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. and Mizuno, T. (2002) Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol. Microbiol. 46, 281-291. https://doi.org/10.1046/j.1365-2958.2002.03170.x
- Perna, N. T., Plunkett, G., 3rd, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J., Kirkpatrick, H. A. et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529-533. https://doi.org/10.1038/35054089
- Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., van Dam, K. and Oliver, S. G. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45-50. https://doi.org/10.1038/83496
- Reed, J. L. and Palsson, B. O. (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185, 2692-2699. https://doi.org/10.1128/JB.185.9.2692-2699.2003
- Reed, J. L., Vo, T. D., Schilling, C. H. and Palsson, B. O. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 4, R54. https://doi.org/10.1186/gb-2003-4-9-r54
- Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030-1032. https://doi.org/10.1038/13732
- Riley, M. and Labedan, B. (1997) Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. J. Mol. Biol. 268, 857-868. https://doi.org/10.1006/jmbi.1997.1003
- Ross-Macdonald, P., Coelho, P. S., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K. H., Sheehan, A., Symoniatis, D., Umansky, L. et al. (1999) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413-418. https://doi.org/10.1038/46558
- Rudd, K. E. (1999) Novel intergenic repeats of Escherichia coli K-12. Res. Microbiol. 150, 653-664. https://doi.org/10.1016/S0923-2508(99)00126-6
- Sabatti, C., Rohlin, L., Oh, M. K. and Liao, J. C. (2002) Coexpression pattern from DNA microarray experiments as a tool for operon prediction. Nucleic Acids Res. 30, 2886-2893. https://doi.org/10.1093/nar/gkf388
- Sharples, G. J. and Lloyd, R. G. (1990) A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res. 18, 6503-6508. https://doi.org/10.1093/nar/18.22.6503
- Shen-Orr, S. S., Milo, R., Mangan, S. and Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64-68. https://doi.org/10.1038/ng881
- Smith, G. R. (1988) Homologous recombination in procaryotes. Microbiol. Rev. 52, 1-28.
- Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M. and Nishioka, T. (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2, 488-494. https://doi.org/10.1021/pr034020m
- Soga, T., Ueno, Y., Naraoka, H., Matsuda, K., Tomita, M. and Nishioka, T. (2002a) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal. Chem. 74, 6224-6229. https://doi.org/10.1021/ac0202684
- Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M. and Nishioka, T. (2002b) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 74, 2233-2239. https://doi.org/10.1021/ac020064n
- Storz, G. (2002) An expanding universe of noncoding RNAs. Science 296, 1260-1263.
- Tao, H., Bausch, C., Richmond, C., Blattner, F. R. and Conway, T. (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181, 6425-6440.
- Tatusov, R. L., Koonin, E. V. and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631-637. https://doi.org/10.1126/science.278.5338.631
- Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J. C. and Hutchison, C. A., 3rd. (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72-84. https://doi.org/10.1093/bioinformatics/15.1.72
- Tweeddale, H., Notley-McRobb, L. and Ferenci, T. (1998) Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool ('metabolome') analysis. J. Bacteriol. 180, 5109-5116.
- Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P. et al. (2000) A comprehensive analysis of proteinprotein interactions in Saccharomyces cerevisiae. Nature 403, 623-627. https://doi.org/10.1038/35001009
- Van Dyk, T. K., Wei, Y., Hanafey, M. K., Dolan, M., Reeve, M. J., Rafalski, J. A., Rothman-Denes, L. B. and LaRossa, R. A. (2001) A genomic approach to gene fusion technology. Proc. Natl. Acad. Sci. USA 98, 2555-2560. https://doi.org/10.1073/pnas.041620498
- Vanbogelen, R. A. (1996) in Escherichia coli and Salmonella: Cellular and Molecular Biology. ed. Neidhart. F. C.
- Wada, A., Koyama, K., Maki, Y., Shimoi, Y., Tanaka, A. and Tsuji, H. (1993) A 5 kDa protein (SCS23) from the 30S subunit of the spinach chloroplast ribosome. FEBS Lett. 319, 115-118. https://doi.org/10.1016/0014-5793(93)80048-Y
- Yamamoto, Y., Aiba, H., Baba, T., Hayashi, K., Inada, T., Isono, K., Itoh, T., Kimura, S., Kitagawa, M., Makino, K. et al. (1997) Construction of a contiguous 874-kb sequence of the Escherichia coli-K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 4, 91-113. https://doi.org/10.1093/dnares/4.2.91
- Yu, B. J., Sung, B. H., Koob, M. D., Lee, C. H., Lee, J. H., Lee, W. S., Kim, M. S. and Kim, S. C. (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat. Biotechnol. 20, 1018-1023. https://doi.org/10.1038/nbt740
- Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M. (2001) Global analysis of protein activities using proteome chips. Science 293, 2101-2105. https://doi.org/10.1126/science.1062191
Cited by
- A framework for whole-cell mathematical modeling vol.231, pp.4, 2004, https://doi.org/10.1016/j.jtbi.2004.07.014
- Functional coupling between vanillate-O-demethylase and formaldehyde detoxification pathway vol.253, pp.2, 2005, https://doi.org/10.1016/j.femsle.2005.09.036
- Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics vol.7, pp.12, 2007, https://doi.org/10.1039/b708236c
- A workflow for bacterial metabolic fingerprinting and lipid profiling: application to Ciprofloxacin challenged Escherichia coli vol.11, pp.2, 2015, https://doi.org/10.1007/s11306-014-0674-6
- Functional analysis of 1440 Escherichia coli genes using the combination of knock-out library and phenotype microarrays vol.7, pp.4, 2005, https://doi.org/10.1016/j.ymben.2005.06.004
- Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110 vol.2, 2006, https://doi.org/10.1038/msb4100049
- Whole-cell modeling framework in which biochemical dynamics impact aspects of cellular geometry vol.244, pp.1, 2007, https://doi.org/10.1016/j.jtbi.2006.07.020
- Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes vol.5, pp.12, 2009, https://doi.org/10.1039/b907407d
- Towards a systems biology approach to study type II/IV secretion systems vol.1778, pp.9, 2008, https://doi.org/10.1016/j.bbamem.2008.03.011
- Application of promoter swapping techniques to control expression of chromosomal genes vol.84, pp.4, 2009, https://doi.org/10.1007/s00253-009-2137-y
- Predictive modelling of complex agronomic and biological systems vol.36, pp.9, 2013, https://doi.org/10.1111/pce.12156
- Integration of omics data: how well does it work for bacteria? vol.62, pp.5, 2006, https://doi.org/10.1111/j.1365-2958.2006.05453.x
- All systems go: launching cell simulation fueled by integrated experimental biology data vol.16, pp.3, 2005, https://doi.org/10.1016/j.copbio.2005.04.004
- A hidden metabolic pathway exposed vol.103, pp.15, 2006, https://doi.org/10.1073/pnas.0601119103
- After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli? vol.75, pp.10, 2012, https://doi.org/10.1016/j.jprot.2011.12.035
- CoryneRegNet 3.0—An interactive systems biology platform for the analysis of gene regulatory networks in corynebacteria and Escherichia coli vol.129, pp.2, 2007, https://doi.org/10.1016/j.jbiotec.2006.12.012
- Laboratory strains of Escherichia coli: model citizens or deceitful delinquents growing old disgracefully? vol.64, pp.4, 2007, https://doi.org/10.1111/j.1365-2958.2007.05710.x
- Towards a dynamical network view of brain ischemia and reperfusion. Part IV: additional considerations vol.3, pp.1, 2010, https://doi.org/10.6030/1939-067X-3.1.104
- CoryneRegNet 4.0 – A reference database for corynebacterial gene regulatory networks vol.8, pp.1, 2007, https://doi.org/10.1186/1471-2105-8-429