DOI QR코드

DOI QR Code

Finite Element Analysis for Die Compaction Process of Cemented Carbide Tool Parts

초경공구 성형을 위한 금형압축공정

  • 현충민 (포항공과대학교 대학원 기계공학과) ;
  • 권영삼 ((주)쎄타텍) ;
  • 정석환 ((주)쎄타텍) ;
  • 김명진 ((주)한국야금 생산기술부) ;
  • 하상렬 (포항공과대학교 대학원 기계공학과) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2004.08.01

Abstract

This paper reports on the finite elements analysis for die compaction process of cemented carbide tool parts. Experimental data were obtained under die compaction and triaxial compression with various loading conditions. The elastoplastic constitutive equations based on the yield function of Shima and Oyane were implemented into an explicit finite element program (ABAQUS/Explicit) and implicit finite element program (PMsolver/Compaction-3D) to simulate compaction response of cemented carbide powder during die compaction. For simulation of die compaction, the material parameters for Shima and Oyane model were obtained by uniaxial die compaction test. Explicit finite element results were compared with implicit results for cemented carbide powder.

Keywords

References

  1. Randall, M. G., 1984, Powder Metallurgy Science, Metal Powder Industries Federation, Prinston, New Jersey, U. S. A.
  2. German, R. M., 1998, Powder Metallurgy of Iron and Steel, John Wiley and Sons, New York, U. S. A.
  3. Gopal S. Upadhyaya, 1998, Cemented tungsten carbides : production, properties, and testing, Noyes Publications, Westwood, New Jersey, U. S. A.
  4. Lewis, R. W., Jinka, A. G. K and Gethin, D. T., 1993, 'Computer-Aided Simulation of Metal Powder Die Compaction Processes,' Powder Metall. Int., Vol. 25, No.6, pp. 287-293
  5. Gethin, D. T., Tran, V. D., Lewis, R. W. and Ariffin, A. K., 1994, 'An Investigation of Powder Compaction Processes,' Int. J. Powder Metall., Vol. 30, No.4, pp. 385-398
  6. Shima, S. and Oyane, M., 1976, ' Plasticity Theory for Porous Metals,' Int, J. Mech. Sci., Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  7. Kwon, Y. S., Lee, H. T. and Kim, K. T., 1997, 'Analysis for Cold Die Compaction of Stainless-Steel Powder,' J. Eng. Mat. Tech., Vol. 119, pp. 366-373 https://doi.org/10.1115/1.2812271
  8. Lee, S. C., Kim, K. T., 2002, 'Densification Behavior of Metal Powder Under Cold Compaction,' Transactions of the KSME(A), Vol. 26, No.1, pp.95-104 https://doi.org/10.3795/KSME-A.2002.26.1.095
  9. Kwon, Y. S., Chung, S. H., Sanderow, H. I., Kim, K. T. and German, R. M., 2003, 'Numerical Analysis and Optimization of Die Compaction Process,' PM2TEC, Las Vegas
  10. ABAQUS User's I, II and III Manual, 2002, Ver. 6.3, H.D. Hibbitt, I. Karlsson and E.P. Sorenson, USA
  11. PMsolver/Compaction-3D User's Manual, 2003, CetaTech, Inc., KOREA
  12. Honecker, A. and Mattiason, K., 1989, 'Finite Element Procedures for 3D Sheet Forming Simulation,' Numiform 89
  13. PM Modnet Computer Modeling Group., 1999, 'Comparison of Computer Models Representing Powder Compact Process,' Powder Metall., Vol. 42, pp.301-311 https://doi.org/10.1179/003258999665648
  14. Kraft, T. and Riedel, H., 2002, 'Numerical Simulation of Die Compaction and Sintering,' Powder Metall., Vol. 45, pp. 227-231 https://doi.org/10.1179/003258902225006989
  15. Kraft, T. and Riedel, H., 2002, 'Computational Shape Optimization of a Cutting Tool,' PM2002 Coating and Cutting Tool Design
  16. Xin, X. J., Jayaraman, P, Jiang, G., Wagoner, R. H., and Daehan, G. S., 2002, 'Explicit Finite Element Method Simulation of Consolidation of Monolithic and Composite Powders,' Metallurgical and Materials Transactions A, Vol. 33A, pp. 2649-2658 https://doi.org/10.1007/s11661-002-0386-9
  17. Xin X. J., Jayaraman, P, Daehan, G. S., Wagoner R. H., 2003, 'Investigation of Yield Surface of Monolithic and Composite Powders by Explicit Finite Element Simulation,' Int. J. Mech. Sci., Vol. 45, No.4, pp.707-723 https://doi.org/10.1016/S0020-7403(03)00107-3
  18. Nagtegaal, J. C. and Taylor, L. M., 1991, 'Comparison of Implicit and Explicit Finite Element Methods for Analysis of Sheet Forming Problems,' VDI Berichte NR.
  19. Aravas, N., 1987, 'On The Numerical Integration of A Class of Pressure-dependent Plasticity Models,' Int. J. Num. Meth. Engrg., Vol. 24, pp. 1395-1416 https://doi.org/10.1002/nme.1620240713
  20. Schofield, A. and Wroth, P., 1968, Critical State Soil Mechanics, McGraw-Hill, London
  21. Lewis, J. G., 1982, 'Implementation of Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms,' ACM Transactions on Mathematical Software, Vol. 8, No.2, pp. 180-189 https://doi.org/10.1145/355993.355998