References
- Im EO, Lee S, Suh H, Kim KW, Bae YT, Kim ND. A novel ursodeoxycholic acid derivative induces apoptosis in human MCF-7 breast cancer cells. Pharm Pharmacol Commun 1999;5:293-298 https://doi.org/10.1211/146080899128734875
- Park YH, Kim J, Baek J, et al. Induction of apoptosis in HepG2 human hepatocellular carcinoma cells by a novel derivative of ursodeoxycholic acid (UDCA). Arch Pharm Res 1997;20:29-33 https://doi.org/10.1007/BF02974038
- Baek JH, Kim J, Kang C, Lee YS and Kim KW. Induction of apoptosis by bile acids in HepG2 human hepatocellular carcinoma cells. Korean J Physiol Pharmacol 1997;1:107-115
- Kim DK, Lee JR, Kim A, et al. Inhibition of initiation of simian virus 40 DNA replication in vitro by the ursodeoxycholic acid and its derivatives. Cancer Lett 1999;146:147-153 https://doi.org/10.1016/S0304-3835(99)00251-7
- Im EO, Choi YH, Paik KJ, et al. Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Lett 2001;163:83-93 https://doi.org/10.1016/S0304-3835(00)00671-6
- Choi, YH, Im EO Suh H, et al. Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Int J Oncol 2001;18:979-984
- Morgan WA, Sharma P, Kaler B, Bach PH. The modulation of protein kinase C by bile salts. Biochem Soc Trans 1997;25:75S
- Ward NE, OBrian CA. The bile acid analog fusidic acid can replace phosphatidylserine in the activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate in vitro. Carcinogenesis 1988;9:1451-1454 https://doi.org/10.1093/carcin/9.8.1451
- Oh SG, Yang KM, Hur WJ, Yoo YH, Suh HS, Lee HS. A novel chenodeoxycholic derivative HS-1200 induces apoptosis in human HT-29 colon cancer cells. J Korean Soc Ther Radiol Oncol 2002;20(4):367-374
- Faubion WA, Guicciardi ME, Miyoshi H, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 1999;103:137-145 https://doi.org/10.1172/JCI4765
- Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/-mice. Science 1999;285:2122-2125 https://doi.org/10.1126/science.285.5436.2122
- Rust C, Karnitz LM, Pays CV, Moscat J, Simari RD, Gores GJ. The bile acid taurochenodeoxycholate activates a phoshatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem 2000;275:20210-20216 https://doi.org/10.1074/jbc.M909992199
- Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1990;3:543-553
- Qiao D, Chen W, Stratagoules, ED, Martinez JD. Bile acid-induced activation of activator protein-l requires both extracellular signal-regulated kinase and protein kinase C signaling. J Biol Chem 2000;275:15090-15098 https://doi.org/10.1074/jbc.M908890199
- Craven PA, Pfanstiel J, Derubertis FR. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids. J Clin Invest 1987;79:532-541 https://doi.org/10.1172/JCI112844
- Song CS, Echchgadda I, Baek BS, et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid x receptor. J Biol Chem 2001;276:42549-42556 https://doi.org/10.1074/jbc.M107557200
- Park DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999;284:1365-1368 https://doi.org/10.1126/science.284.5418.1365
- Hallahan DE, Sukhatme VP, Sherman ML, et al. Protein kinase C mediates X-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci USA 1991;88:2156-2160 https://doi.org/10.1073/pnas.88.6.2156
- Uckun FM, Tuel-Ahlgren L, Song CW, et al. Ionizing radiation stimulates unidentified tyrosine-specific protein kinases in human B-lymphocyte precursors, triggering apoptosis and clonogenic cell death. Proc Natl Acad Sci USA 1992;89:9005-9009 https://doi.org/10.1073/pnas.89.19.9005
- Findik D, Song Q, Hidaka H, Lavin M. Protein kinase A inhibitors enhance radiation-induced apoptosis. J Cell Biochem 1995;57:12-21 https://doi.org/10.1002/jcb.240570103
- Wang CY, Mayo MW, Baldwin AS, Jr. TNF-and cancer therapy-induced apoptosis; potentiation by inhibition of NFkappaB. Science 1996;274:784-787 https://doi.org/10.1126/science.274.5288.784
- Kim SH, Seong JS. The Fas/FasL in radiation-induced apoptosis in vivo. J Korean Soc Ther Radiol Oncol 2003;21(3):222-226
- Reap EA, Roof K, Maynor K, et al. Radiation and stress induced apoptosis; A role for Fas/Fas ligand interactions. Proc Natl Acad Sci USA 1997;94:5750-5755 https://doi.org/10.1073/pnas.94.11.5750
- Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J. Up-regulation of Fas(CD95) in human p53 wild-type cancer cells treated with ionizing radiation. Int J Cancer 1997;73: 757-762 https://doi.org/10.1002/(SICI)1097-0215(19971127)73:5<757::AID-IJC24>3.0.CO;2-1
- Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268:1749-1753 https://doi.org/10.1126/science.7792600
- Weichselbaum RR, Hallahan D, Fuks Z, Kufe D. Radiation induction of immediate early genes; effectors of the radiation stress response. Int J Radiat Oncol Biol Phys 1994;30:229-234 https://doi.org/10.1016/0360-3016(94)90539-8
- Hockenbery D, Nunez G, Miliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334-336 https://doi.org/10.1038/348334a0
- Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997;3:614-620 https://doi.org/10.1038/nm0697-614
- Cherbonnel-Lasserre C, Gauny S and Kronenberg A. Suppression of apoptosis by Bcl-2 or Bcl-xL promotes susceptibility to mutagenesis. Oncogene 1996;13:1489-1497
- Cherbonnel-Lasserre C and Dosanjh MK. Suppression of apoptosis by overexpression of Bcl-2 or Bcl-xL promotes survival and mutagenesis after oxidative damage. Biochimie 1997;79:613-617 https://doi.org/10.1016/S0300-9084(97)82011-1
- Pauwels B, Korst AEC, Pattyn GGO et al. Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 2003;57:1075-1083 https://doi.org/10.1016/S0360-3016(03)01443-3
- Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275:1126-1132 https://doi.org/10.1126/science.275.5303.1126
- Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane pertubation. J Clin Invest 1998; 101:2790-2799 https://doi.org/10.1172/JCI1325
- Zamzami N, Susin SA, Masse B, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995;182:367-377 https://doi.org/10.1084/jem.182.2.367
- Zamzami N, Marchetti P, Castedo M, et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial membrane potential during apoptosis. FEBS Lett 1996;384:153-157
- Yershalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ. Bile acid induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 2001;33:616-626 https://doi.org/10.1053/jhep.2001.22702
- Yoon HS, Rho JH, Yoo KW, et al. Synthetic bile acid derivatives induce nonapoptotic death of human retinal pigment epithelial cells. Curr Eye Res 2001;22:367-374 https://doi.org/10.1076/ceyr.22.5.367.5499