DOI QR코드

DOI QR Code

탄저병균에 대하여 길항작용을 보이는 Burkholderia cepacia EB215로부터 분리한 Pyrrolnitrin의 항균활성

In vivo Antifungal Activity of Pyrrolnitrin Isolated from Burkholderia capacia EB215 with Antagonistic Activity Towards Colletotrichum Species

  • 박지현 (한국화학연구원 생물기능연구팀,경상대학교 응용생명과학부, 기초과학연구소) ;
  • 최경자 (한국화학연구원 생물기능연구팀) ;
  • 이선우 (한국화학연구원 생물기능연구팀) ;
  • 장경수 (한국화학연구원 생물기능연구팀) ;
  • 최용호 (한국화학연구원 생물기능연구팀) ;
  • 정영륜 (경상대학교 응용생명과학부, 기초과학연구소) ;
  • 조광연 (한국화학연구원 생물기능연구팀) ;
  • 김진철 (한국화학연구원 생물기능연구팀)
  • Park, Ji-Hyun (Biological Function Research Team, Korea Research Institute of Chemical Technology,Division of Applied Life Sciences (BK21 program) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Gyung-Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lee, Seon-Woo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Chung, Young-Ryun (Division of Applied Life Sciences (BK21 program) and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Kwang-Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • 발행 : 2004.06.30

초록

오이 뿌리조직으로부터 분리한 식물내생세균 EB215균은 탄저병균인 Colletotrichum species에 대하여 강한 항균활성을 보였다. 이 균은 생리 생화학적 특성과 Biolog 실험 및 16S rDNA 유전자 서열에 의해 Burkholderia cepacia로 동정되었다. 이 균의 항균물질 생산을 위한 최적배지는 nutrient 액체(NB) 배지로 그리고 배양기간은 3일로 결정되었다. B. cepacia EB215 균주의 NB 배양체로부터 원심분리, n-hexane 분획, silica gel 컬럼, preparative TLC 및 in vitro 생물검정 등을 통하여 한 개의 항균물질을 분리하였다. 이 물질은 질량분석과 핵자기공명 분석을 통하여 pyrrolnitrin으로 동정되었다. Pyrrolnitrin은 고추 탄저병(Colletotrichum coccodes), 오이 탄저병(Colletotrichum orbiculare), 벼 도열병(Magnaporthe grisea), 벼 잎집무늬마름병(Corticium sasaki) 등의 4가지 식물병에는 $11.1\;{\mu}g/ml$ 낮은 농도에서도 90% 이상의 높은 방제활성을 보였다. 그리고 또한 토마토 잿빛곰팡이병(Botrytis cinerea)과 밀 붉은녹병(Puccinia recondita)에 대해서는 $33.3\;{\mu}g/ml$ 이상의 농도에서 90% 이상의 방제활성 보였다. 하지만 Phytophthora infestans에 의한 토마토 역병에 대해서는 전혀 항균활성이 없었다. 앞으로 B. cepacia EB215균을 이용한 미생물살균제 개발에 대하 연구를 진행할 예정이다.

An endophytic bacterial strain EB215 that was isolated from cucumber (Cucumis sativus) roots displayed a potent in vivo antifungal activity against Colletotrichum species. The strain was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, and 16S rDNA gene sequence. Optimal medium and incubation period for the production of antifungal substances by B. cepacia EB215 were nutrient broth (NB) and 3 days, respectively. An antifungal substance was isolated from the NB cultures of B. cepacia EB215 strain by centrifugation, n-hexane partitioning, silica gel column chromatography, preparative TLC, and in vitro bioassay. Its chemical structure was determined to be pyrrolnitrin by mass and NMR spectral analyses. Pyrrolnitrin showed potent disease control efficacy of more than 90% against pepper anthracnose (Colletotrichum coccodes), cucumber anthracnose (Colletotrichum orbiculare), rice blast (Magnaporthe grisea) and rice sheath blight (Corticium sasaki) even at a low concentration of $11.1\;{\mu}g/ml$. In addition, it effectively controlled the development of tomato gray mold (Botrytis cinerea) and wheat leaf rust (Puccinia recondita) at concentrations over $33.3\;{\mu}g/ml$. However, it had no antifungal activity against Phytophthora infestans on tomato plants. Further studies on the development of microbial fungicide using B. cepacia EB215 are in progress.

키워드

참고문헌

  1. 식물내생세균 Burkholderia cepacia EB215로부터 분리한 항균물질의 특성 규명 박지현
  2. Agr. Biol. Chem. v.28 Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas Arima, K.;Imanaka, H.;Kousaka, M.;Fukuta, A.;Tamura, G. https://doi.org/10.1271/bbb1961.28.575
  3. Infection strategies of Colletotricum species;Colletotricum: Biology, Pathology and Control Bailey, J.A.;O'Connell, R.J.;Pring, R.J.;Nash, C.;Bailey, J.A.(ed.);Jeger, M.J.(ed.)
  4. Phytopathology v.73 Inhibition effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves Baker, C.J.;Stavely, J.R.;Thomas, C.A.;Sasser, M.;Mac-Fall, J.S. https://doi.org/10.1094/Phyto-73-1148
  5. Can. J. Bot. v.67 Nonspecific response in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd Bashan, Y.;Ream, Y.;Levanony, H.;Sade, A. https://doi.org/10.1139/b89-175
  6. Curr. Microbiol. v.32 Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens Chernin, L.;Brandis, A.;Ismailov, Z.;Chet, I.
  7. The BioPesticide Manual Copping, L.G.
  8. Trends Biotechnol. v.12 Metabolites of pseudomonads involved in the biocontrol of plant disease Dowling, D.N.;O'Gara, F. https://doi.org/10.1016/0167-7799(94)90091-4
  9. J. Appl. Microbiol. v.85 Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungal and novel activities against streptomycetes El-Banna, N.;Winkelmann, G. https://doi.org/10.1046/j.1365-2672.1998.00473.x
  10. Plant Dis. v.85 Characterization of Colletotricum gloeosporioides isolates from ornamental lupines in Connecticut Elmer, W.H.;Yang, H.A.;Sweetingham, M.W. https://doi.org/10.1094/PDIS.2001.85.2.216
  11. Appl. Environ. Microbiol. v.43 Identity and behavior of xylern-residing bacteria in rough lemon roots of Florida citrus trees Gardner, J.M.;Feldman, A.F.;Zablotowicz, R.M.
  12. J. Antibiotics v.35 Pyrrolnitrin from Myxococcus fulvus (Myxobacterales) Gerth, K.;Trowitzsch, W.;Wray, V.;Hofle, G.;Irschik, H.;Reichenbach, H. https://doi.org/10.7164/antibiotics.35.1101
  13. Can. J. Microbiol. v.43 Bacterial endophytes in agricultural crops Hallmann, J.;Quadt-Hallmann, A.;Mahaffee, W.F.;Kloepper, J.W. https://doi.org/10.1139/m97-131
  14. Antimicrob. Agents Chemother. v.1967 Metabolism of tryptophan by Pseudomonas aureofaciens. V. Conversion of trytophan to pyrrolnitrin Harnill, R.;Elander, R.;Mabe, J.;Gorman, M.
  15. Annals Phytopathol. Soc. Japan v.55 Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia Homma, Y.;Suzui, T. https://doi.org/10.3186/jjphytopath.55.643
  16. Phytopathology v.78 Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia Janisiewicz, W.;Roitman, J. https://doi.org/10.1094/Phyto-78-1697
  17. Tetrahedron Lett. v.37 Structural identification of cepaciamide A. a novel fungitoxic compound from Pseudomonas cepacia D-202 Jiao, Y.;Yoshihara, T.;Ishikuri, S.;Uchino, H.;Ichihara, A. https://doi.org/10.1016/0040-4039(95)02342-9
  18. Bergey's Mcnual of Determinative Bacteriology John, G.H.;Krieg, N.R.;Sneath, P.H.A.
  19. Bacteriol. Rev. v.41 The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions Katz, E.;Demain, A.
  20. Pest Manag. Sci. Screening extracts of Achyranthes japonica and Rumex crispus for activity against various plant pathogenic fungi and control of powdery mildew Kim, J.C.;Choi, G.J.;Lee, S.W.;Kim, J.S.;Chung, K.S.;Cho, K.Y.
  21. Pest Manag. Sci. v.57 Activity against plant pathogenicfungi of phomalactone isolated from Nigrospora sphaerica Kim, J.C.;Choi, G.J.;Park, J.H.;Kim, H.T.;Cho, K.Y. https://doi.org/10.1002/ps.318
  22. Bacterial endophytes and their effect on plants and uses in agriculture;Microbial endophytes Kobayashi, D.Y.;Palunbo, J.D.;Bacon, C.W.(ed.);White, J.F.(ed.)
  23. Pestic. Sci. v.39 Microbial fungicides-the natural choice Lange, L.;Breinholt, J.;Rasmussen, F.W.;Nielsen, R.I. https://doi.org/10.1002/ps.2780390209
  24. J. Antibiotics v.47 Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation, and biological activity Lee, G.H.;Kim, S.;Hyun, B.;Suh, J.W. https://doi.org/10.7164/antibiotics.47.1402
  25. Microbiol. Rev. v.43 Secondary metabolites of the fluorescent pseudomonads Leisinger, T.;Margaff, R.
  26. Plant Soil v.173 Survey of indigenous bacterial endophytes from cotten and sweet corn McInroy, J.A.;Kloepper, J.W. https://doi.org/10.1007/BF00011472
  27. J. Antibiotics v.21 Xylocandin: a new complex of antifungal peptide. I. Taxanomy, isolation andbiological activity Meyers, E.;Bisacchi, G.S.;Dean, L.
  28. Appl. Eniron. Microbiol. v.32 Bacteria within ovules and seeds Mundt, J.O.;Hinkle, N.F.
  29. Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth promoting pseudomonad bacterium;Ecophysiology and photosynthetic in vitro cultures Nowak, J.;Asiedu, S.K.;Lazarovits, G.;Pillay, V.;Stewart, A.;Smith, C.;Liu, Z.;Carre, F.(ed.);Changvardieff, P.(ed.)
  30. J. Antibiotics v.37 Cepacin A and cepacin B, two antibiotics produced by Pseudomonas cepacia Parker, W.L.;Rathnum, M.L.;Seiner, V.;Trejo, W.H.;Principe, P.A.;Sykes, R.B. https://doi.org/10.7164/antibiotics.37.431
  31. Pestic. Sci. v.39 Diversity of microbial products-discovery and application Porter, N.;Fox, F.M. https://doi.org/10.1002/ps.2780390210
  32. Pestic. Sci. v.37 Technical and commercial aspects of biocontrol products Powel, K.A.;Jutsum, A.R. https://doi.org/10.1002/ps.2780370403
  33. Plant Soil v.175 The role of endophytic bacteria during seed piece decay and potato tuberization Sturz, A.V. https://doi.org/10.1007/BF00011362