DOI QR코드

DOI QR Code

Isolation of Gibberellin-producing Penicillium spp. from the Root of Lindera obtusiloba and Vaccinium koreanum

생강나무와 산앵두나무의 뿌리에서 분리한 Penicillium spp.의 지베렐린 생산성

  • Choi, Wha-Youl (Department of Microbiology, Kyungpook National University) ;
  • Lee, Jin-Hyung (Department of Microbiology, Kyungpook National University) ;
  • Shin, Kee-Sun (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, In-Jung (Department of Agronomy, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
  • Published : 2004.06.30

Abstract

The gibberellins (GAs) play important roles in plant growth and development. Twenty three fungi were isolated from the roots of Lindera obtusiloba and Vaccinium koreanum. The numbers of GA-producing fungi were six strains from Lindera obtusiloba and four strains from Vaccinium koreanum. The fungi with GAs-producing activity were incubated for seven days in 40 ml of Czapek's liquid medium at $25^{\circ}C$, 120 rpm, and the amount of each GA in the medium was measured by gas chromatography-mass spectrometer (GC-MS) to determine the productivity of GAs. Penicillium griseofulvum KNU5379 produced more GA in case of $GA_{3}$ than Neurospora crassa known as a GAs-producing fungus. P. griseofulvum KNU5379 was shown to produce $GA_1\;9.79\;ng,\;GA_3\;133.58\;ng,\;GA_4\;2.64\;ng,\;GA_7\;7.80\;ng\;and\;GA_{53}\;0.73\;ng$ in 25 ml of liquid medium. Bioassay using culture fluid of GAs-production fungi was performed on rice sprout.

Gibberellins(GAs)는 식물의 성장과 발전에 있어서 중요하게 작용한다고 알려져 있다. 따라서 본 연구에서는 농업과 원예분야에 매우 중요한 새로운 GAs 생성미생물을 탐색하고자 실험을 수행하였다. 생강나무(Lindera obtusiloba)와 산앵두나무(Vaccinium koreanum)의 뿌리에 존재하는 사상균을 분리하여 GAs 생산 활성을 측정하였으며, 비색법으로 GA 생산량을 분석하였을 때 이들 중에서 GAs 생산량이 가장 많은 것으로 확인된 두 균주에 대하여 여러 GAs 중에서 식물생장촉진 활성이 높다고 알려진 $GA_{1},\;GA_{3},\;GA_{4}$$GA_{7},\;GA_{53}$에 대하여 생산정도를 분석하고, 동정을 수행하였으며, Waito-c(난장이 볍씨)에서 Bioassay를 수행하였다. 생강나무에서는 6종의 균주, 산앵두나무에서는 4종류의 GAs 생산균을 분리하였고, 분리된 균중 GAs를 가장 많이 생산하는 균주들에 대하여 동정한 결과, 생강나무에서 분리한 C03 균주는 P. urticae KNUC03으로 동정되었으며, 산앵두나무에서 분리한 E03 균주는 P. griseofulvum KNUE03으로 동정되었다. 생합성된 GAs를 분석한 결과 P. urticae KNUC03 균주는 배양액 25 ml 중에 $GA_1\;7.08\;ng,\;GA_3\;30.80\;ng,\;GA_{4}\;1.27\;ng,\;GA_{7}\;0.88\;ng$$GA_{53}\;0.13\;ng$을 생산하였고 P. griseofulvum KNUE03은 $GA_1\;9.79\;ng,\;GA_3\;133.58\;ng,\;GA_4\;2.64\;ng,\;GA_7\;7.80\;ng$$GA_{53}\;0.73\;ng$을 생산하는 것이 확인되었다. 두 균주 중에서 P. griseofulvum KNUE03이 GAs를 더 많이 생산함을 알 수 있었다.

Keywords

References

  1. 한국작물학회지 v.42 수수의 점간 신장에 미치는 지베렐린과 파이토크롬 B의 영향 이인중;김길웅;Morgan, P.W.
  2. 한국산업미생물학회지 v.11 지베렐린 생산에 관한 연구 이영선;손형진;김익환;민태의
  3. Recent Res. v.1 Regulation of Gibberellin production in the fungus Gibberella fujikuroi Avalos, J.;Sanchez-Fernandez, R.;Fernandez-Martin, R.;Candau, R.
  4. New Phytol. v.135 Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae) Bayman, B.;Lebron, L.L.;Tremblay, R.L.;Lodge, D.J. https://doi.org/10.1046/j.1469-8137.1997.00618.x
  5. Can. J. Microbiol. v.10 Metabolism of Gibberella fujikuroi in stirred culture Borrw, A.;Brown, S.;Jefferys, E.G.;Kessel, R.H.J.;Lloyd, P.B.;Rothwell, A.;Rothwell, B.;Swait, J.C. https://doi.org/10.1139/m64-054
  6. Appl. Microbiol. Biotechnol. v.53 Nitrogen regulation of Gibberellin biosynthesis in Gibberella fujikuroi Brucker, B.;Blecschmidt, D. https://doi.org/10.1007/s002530000326
  7. Plant Physiol. v.100 Regulation of gibberellin biosynthesis in Gibberellia fujikuroi Candau, R.;Avalos, J.;Olmedo, E.C. https://doi.org/10.1104/pp.100.3.1184
  8. Appl. Environ. Microbiol. v.66 Fusarium species from Nepalesc rice and production of mycotoxins and gibberellic acid by selected species Desjardins, A.E.;Manandhar, H.K.;Plattner, R.D.;Manandhar, G.G.;Poling, S.M.;Maragos, C.M. https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  9. Physiologia Plantarum. v.85 Detection and identification of gibberellins in Douglas fir (Pseudotsuga menziesii) shoots Doumas, P.;Imbault, N.;Moritz, T.;Oden, P.C. https://doi.org/10.1111/j.1399-3054.1992.tb05816.x
  10. J. Biotechnol. v.76 Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors Escamilla Silva, E.M.;Dendooven, L.;Magana, I.P.;Parra, R.;De la Torre, M. https://doi.org/10.1016/S0168-1656(99)00182-0
  11. Acta Microbiol. Immunol. Hung. v.49 Gibberellin and auzin-indole production by plant root-fungi and their biosyntesis under salinity-calcium interaction Hasan, H.A. https://doi.org/10.1556/AMicr.49.2002.1.11
  12. Trends Plant Science v.5 Gibberellin metabolism: new insights revealed by the genes Hendden, P.;Phillips, A.L. https://doi.org/10.1016/S1360-1385(00)01790-8
  13. J. Plant Growth Regulation v.20 Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? Hendden, P.;Phillips, A.L.;Rojas, M.C.;Carrera, F.;Tudzynski, B.
  14. Plant Physiology v.119 Genetic analysis of gibberellin biosynthesis Hendden, P.;Procbsting, W.M. https://doi.org/10.1104/pp.119.2.365
  15. Adv. Chem. Series v.28 Holbrook, A.H.;Edge, W.J.;Bailey, F. https://doi.org/10.1021/ba-1961-0028.ch018
  16. Biosci. Biotech. Biochem. v.57 Accumulation of gibberellin $A_{1}$ and the metabolism of gibberellin $A_{9}$ to gibberellin $A_{1}$ in a Phaeosphaeria sp. L 487 culture Kawaide, H.;Sassa, T. https://doi.org/10.1271/bbb.57.1403
  17. Agric. Biol. Chem. v.47 Identification of gibberellin $A_{3}$ in mycclia Neurospora crassa Kawanabe, Y.;Yamane, H.;Murayama, T.;Takahashi, N.;Nakamura, T. https://doi.org/10.1271/bbb1961.47.1693
  18. Tree Physiol. v.18 In vitro effect of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of derooted shoot hypocotyls of Norway spruce Karabaghli, C.;Frey-Klett, P.;Sotta, B.;Bonnet, M.;Le Tacon, F. https://doi.org/10.1093/treephys/18.2.103
  19. J. Microbiol. Biotechnol. v.10 Rapid and accurate species specific detection of Phytophthora infestans through analysis of ITS regions in its rDNA Kim, K.S.;Lee, Y.S.
  20. Planta. v.204 Molecular biology of gibberellin synthesis Lange, T. https://doi.org/10.1007/s004250050274
  21. Plant Physiol. v.116 Photoperiod control of gibberellin levels and flowcring in sorghum Lange, T.;Foster, K.R.;Morgan, P.W. https://doi.org/10.1104/pp.116.3.1003
  22. Trends Plant Science v.5 Gibberellin and abscisic acid signalling in aleurone Lovcgrove, Alison;Hooley, R. https://doi.org/10.1016/S1360-1385(00)01571-5
  23. J. Plant Growth Regul. v.20 Occurrence of gibberellins in vascular plants, fungi, and bacteria Macmillan, J. https://doi.org/10.1007/s003440010038
  24. Plant Physiol. v.113 Gibberellin biosynthesis from gibberellin A12-aldehyde in endosperm and embryos of marah macrocarpus Macmillan, J.;Ward, D.A.;Phillip, A.L.;Sanchez-Beltran, M.J.;Gaskin, P.;Lange, T.;Hedden, P. https://doi.org/10.1104/pp.113.4.1369
  25. Nat. Prod. Rep. v.20 Twenty years of gibberellin research Mander, L.N. https://doi.org/10.1039/b007744p
  26. Mol. Microbiol. v.47 Area directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR Mihlan, M.;Homann, V.D.;Liu, T.W.;Tudzynski, B. https://doi.org/10.1046/j.1365-2958.2003.03326.x
  27. The Plant Cell. v.14 Gibberellin signaling: biosynthesis, catabolism, and response pathways Olszewski, N.;Sun, T.P.;Gubler, F.
  28. Planta. v.207 Light intensity, gibberellin content and the resolution of shoot growth in Brassica Petter, T.I.;Rood, S.B.;Zanewich, K.P. https://doi.org/10.1007/s004250050510
  29. J. Plant Physi. v.12 Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg Rachev, Rossen;Gancheva, Vjara;Bojkova, Sebastiana;Christov, Christo;Zafirova, Tiha
  30. Appl. Microbiol. Biotechnol. v.55 Solid-state fermentation: a promising microbial technology for secondary metabolite production Robinson, T.;Singh, D.;Nigam, P. https://doi.org/10.1007/s002530000565
  31. FEBS Letters. v.413 Inhibition of gibberellin biosynthesis by nitrate in Gibberella fujikuroi Sanchez-Fernandez, R.;Avalos, J.;Cerda-Olmedo, E. https://doi.org/10.1016/S0014-5793(97)00872-7
  32. Appl. Microbiol. Biotechnol. v.52 Biosynthesis of gibberellins in Gibberellia fujikuroi: biomolecular aspects Sanchez-Fernandez, R. https://doi.org/10.1007/s002530051524
  33. Fungal Genet. Biol. v.25 Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster Sanchez-Fernandez, R.;Holter, K. https://doi.org/10.1006/fgbi.1998.1095
  34. J. Biol. Chem. v.278 Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: des and P450-3 encode GA4 desaturase and the 13-hydrozylase, respectively Sanchez-Fernandez, R.;Mihlan, M.;Cecilia Rojas, M.;Linnemannstons, P.;Gaskin, P.;Hedden, P. https://doi.org/10.1074/jbc.M301927200
  35. Appl. Soil Ecology. v.15 Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants Vazquez, M.M.;Cesar, S.;Azcon, R.;Barea, J.M. https://doi.org/10.1016/S0929-1393(00)00075-5
  36. Soil Biol Biochemi. v.32 Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi Vierheilig, H.;Garcia-Garrido, J.M.;Wyss, U.;Piche, Y. https://doi.org/10.1016/S0038-0717(99)00155-8
  37. Amplification and direct sequencing of fungal fibosomal RNA genes for phylogenetics.;PCR Protocols: A guide to methods and applicatios White, T.J.;Bruns, T.;Lee, S.;Taylor, J.;Innis, M.A.(ed.);Gelfand, D.H.(ed.);Sninski, J.J.(ed.);White, T.J.(ed.)

Cited by

  1. Gibberellin A4Producted by Fusarium solani Isolated from the Roots of Suaeda japonica Makino vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1718
  2. Pretreatment of curcumin protects hippocampal neurons against excitotoxin-induced cell death vol.17, pp.1, 2007, https://doi.org/10.5352/JLS.2007.17.1.012
  3. Plant Growth Promotion and Gibberellin A3 Production by Aspergillus flavus Y2H001 vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.200
  4. Optimization of gibberellin production by Fusarium prolifertum KGL0401 and its involvement in waito-c rice growth vol.17, pp.1, 2007, https://doi.org/10.5352/JLS.2007.17.1.120
  5. Plant Growth Promotion of Calystegia soldanella and Ischaemum anthephoroides by the Strain Penicillium citrinum KACC43900 vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1373
  6. Regulation of cell size and cell number by LANCEOLATA1 gene in Arabidopsis vol.17, pp.1, 2007, https://doi.org/10.5352/JLS.2007.17.1.001
  7. Plant growth-promoting activity and identification of endophytic fungi isolated from native plant in East coast vol.51, pp.1, 2015, https://doi.org/10.7845/kjm.2015.5005