Rheological Properties of Gamma Irradiated Arrowroot (Pueraria thunbergina. B) Starch

감마선 조사 칡 전분 gel의 rheology 특성

  • Kuhm, Herena (Department of Food Science and Technology, Chungnam National University) ;
  • Lim, Jin-Hyuk (Department of Food Science and Technology, Chungnam National University) ;
  • Lee, Eun-Ju (Department of Food Science and Technology, Chungnam National University) ;
  • Chang, Kyu-Seob (Department of Food Science and Technology, Chungnam National University)
  • Published : 2004.10.31

Abstract

Rheological properties of gamma-irradiated arrowroot starch was examined to utilize as fundamental research data far processing. Irradiated arrowroot starch solutions (3, 4, 5, 6%) were gelatinized at $95^{\circ}C$ for 40 min, and its flow properties measured using rheometer at $30^{\circ}C$ and 10 to 200 rpm rotation rate. Rheological parameters of irradiated arrowroot starch gelatinized solution were calculated using Herschel-Bulkley equation. Gelatinized arrowroot starch solutions irradiated at $0^{\circ}C$ and 5kGy showed pseudoplastic fluid behavior, while those irradiated at 10, 20, and 30kGy were the dilatant with ${\tau}_y=0$ (yield stress).

이 연구는 감마선 조사 칡전분의 레올로지 특성을 알아보아 이것의 가공을 위한 기초자료로 활용하고자 실시되었다. 0-50kGy의 감마선 조사시킨 칡 전분을 3-6%의 용액상태로 만든 뒤 $35^{\circ}C$에서 40분 동안 열을 가하여 호화를 시킨 뒤 rheometer를 이용하여 측정온도 $30^{\circ}C$에서 10-200 rpm의 조건으로 시료액의 유동특성을 알아보았다. 칡 전분 시료 호화액의 레올로지 특성 값은 유동거동 지수 및 항복응력을 고려한 Herschel-Bulkley 방정식을 적용하여 계산하였다. 실험결과 감마선 조사를 하지 않은 것과 5kGy의 감마선 조사를 한 3-6%의 호화 칡 전분 용액의 레올로지 유동거동은 의가소성을 나타내었으나, 10-30kGy의 감마선을 조사한 호화 칡 전분 용액은 ${\tau}_y=0$인 dilatant의 유동거동 특성을 보였다.

Keywords

References

  1. Radley JA. Starch production technology. Appl. Sci. 1: 237-240 (1982)
  2. Kim K, Yoon HK, Kim SK. Physicochemical and rheological properties of arrowroot starch. J. Korean Agric. Chem. Soc. 27:245-252 (1984)
  3. Park JH, Na HS, Kang KJ, Kim K, Kim SK. Comparison of physicochemical properties of arrowroot starches harvested in different time. Korean J. Food Sci. Technol. 30: 97-102 (1998)
  4. Oh MJ, Lee KS, Son HY, Kim SY. Antioxidative components of pueraria root. Korean J. Food Sci. Technol. 22: 793-798 (1990)
  5. Ciacco F, D'Appolonia BL. Characterization of starches from various tubers and their use in breadbaking. Cereal Chem. 54: 1096-1107 (1977)
  6. Kwon JH. Advances in food irradiation and it's potential roles in Korea. J. Food Hyg. Saf. 9: 35-49 (1994)
  7. WHO. Wholesomeness of irradiated food. Technical Report Series 659: 34-40 (1981)
  8. KFDA. Food Code. Korea Food and Drug Administration, Seoul, Korea (2002)
  9. Lee SR, Kim SK, Lee KY. Effect of gamma-irradiation on the storage stability and quality of polished wheat. Korean J. Food Sci. Technol. 5: 95-101 (1973)
  10. MacArthur LA, D'appolonia BL. Gamma radiation of wheat. I. Effects on dough and backing properties. Cereal Chem. 60: 456-460 (1983)
  11. MacArthur LA, D'appolonia BL. Gamma radiation of wheat. II. Effects of low-dosage radiations on starch properties. Cereal Chem. 61: 321-326 (1984)
  12. Sabularse VC, Liuzzo JA, Rao RM, Grodner RM. Physicochemical characteristics of brown rice as influenced by gamma irradiation. J. Food Sci. 57: 143-145 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb05442.x
  13. Lee JH, Chang YI, Chang KS. Effect of gamma irradiations on physical properties of buckwheat starch. Food Eng. Prog. 4: 110-119 (1999)
  14. Byun MW, Kang IJ, Kwon JH, Lee SJ, Kim SK. The improvement of corn starch isolation process by gamma irradiation. Korean J. Food Sci. Technol. 27: 30-35 (1995)
  15. Longree K, Beaver S, Back P, Nowrey JE. Viscous behavior custard system. J. Agric. Food Chem. 14: 653-659 (1966) https://doi.org/10.1021/jf60148a033
  16. Rha CK. Rheology of fluid foods. Food Technol. 32: 77-81 (1987)