Effect of the Cooking Condition on Enzyme-resistant Starch Content and in vitro Starch and Protein Digestibility of Tarakjuk (Milk-rice Porridge)

타락죽의 효소저항전분 함량과 in vitro 전분 및 단백질 분해율에 대한 가열조건의 영향

  • Lee, Gui-Chu (Department of Home Economics Education, Korea University) ;
  • Lim, Seung-Taik (Graduate School of Biotechnology, Korea University) ;
  • Yoon, Hyun-Sung (Graduate School of Biotechnology, Korea University)
  • Published : 2004.10.31

Abstract

Cooking condition of Tarakjuk (milk-rice porridge) was established based on gelatinization temperature using differential scanning calorimetry (DSC) of roasted Ilpum rice flour, which has highest enzyme-resistant starch (RS) content. Effect of cooking temperature and time on DSC characteristics, crystallity with X ray diffractogram, RS content, in vitro starch digestibility (IVSD), amino acid composition, and in vitro protein digestibility (IVPD) of Tarakjuk were determined. Tarakjuk was cooked at 50, 56.5, 64, and $69^{\circ}C$ for various durations. Rice flour ingredient used was Ilpum, previously roasted at $185^{\circ}C$ for 25 min. Tarakjuk cooked at 50 and $56.5^{\circ}C$ showed two thermal transitions between $63.7-125.2^{\circ}C$ as determined by DSC, corresponding to endotherms of starch gelatinization $(63.7-73.8^{\circ}C)$ and melting of amylose-lipid complex (AM-lipid complex, $97.7-125.2^{\circ}C$), whereas that cooked at 64 and $69^{\circ}C$ showed only AM-lipid complex melting transition between $96.9-127.6^{\circ}C$. As cooking temperature increased, RS content of Tarakjuk decreased, whereas IVSD increased. Total amino acid content was between 11,558-15,601mg/100g, depending on cooking condition used. Compared with conventionally made control, contents of essential amino acids, such as lysine and tryptophane, were higher at 50 and $56.5^{\circ}C$, and IVPD showed higher increase. Results reveal degree of gelatinization in Tarakjuk with high RS content as well as low IVSD and high IVPD, which are important from physiological and nutritional point of view, can be produced by controlling cooking condition.

RS 함량이 가장 높은 볶은 일품 멥쌀가루를 사용하여 DSC로 호화온도를 측정하여 타락죽의 가열조건을 설정하였다. 이로부터 설정된 가열조건을 이용하여 타락죽의 differential scanning calorimetry(DSC) 특성과 X선회절도에 의한 결정성, 효소 저항전분(enzyme-resistant starch, RS) 함량과 in vitro 전분분해율(IVSD) 그리고 아미노산 조성과 in vitro 단백질 분해율(IVPD)에 대한 가열온도와 시간의 영향을 측정한 결과는 다음과 같다. 가열조건을 달리한 타락죽은 $185^{\circ}C$에서 25분 볶은 일품 멥쌀가루를 사용하여 50, 56.5, 64 그리고 $69^{\circ}C$에서 각각 30과 60분, 60과 120분, 120과 240분, 240과 300분 가열하여 제조하였고, 재래식으로 10분간 끓여서 만든 타락죽을 대조구로 하였다. DSC로 측정한 결과 50와 $56.5^{\circ}C$에서 가열한 타락죽은 $63.7-125.2^{\circ}C$의 온도범위에서 두개의 열전이를 나타내었는데, 이들은 각각 아밀로펙틴의 용융$(63.7-73.8^{\circ}C)$과 AM-lipid 복합체의 용융$(97.7-125.2^{\circ}C)$에 해당한다. 반면, 가열온도 64와$69^{\circ}C$에서는 $96.9-127.6^{\circ}C$에서 AM-lipid 복합체 용융을 위한 한 개의 열전이를 나타내었다. 또한 AM-lipid복합체 열전이를 위한 용융엔탈피는 가열조건에 따라서 대조구의 14.22J/g보다 낮은 것으로 나타나 대조구에서 AM-lipid 복합체 형성이 가장 많은 것으로 생각된다. X선회절도에 의하면 타락죽은 가열온도 50와 $56.5^{\circ}C$에서는 일부 회절각도에서 피크가 잔존하였다. 타락죽의 RS함량은 가열온도가 증가할수록 50>56.5>대조구>64>$69^{\circ}C$의 순서로 감소한 반면, IVSD는 50<56.5<대조구<64<$69.5^{\circ}C$의 순서로 증가하였다. 타락죽의 총아미노산 함량은 가열조건에 따라서 11,558-15,601mg/100g을 나타내었으며 $56.5^{\circ}C$에서 120분 가열 시 가장 높았다. Lysine과 tryptophane과 같은 필수아미노산 함량은 가열온도 50와 $56.5^{\circ}C$에서 재래식으로 끓여 제조한 타락죽보다 높았다. 한편 타락죽의 IVPD는 모두 대조구보다 증가하였다.

Keywords

References

  1. Lee GC. A study on the traditional daily food of Seoul. Asian Comp. Folklore 20: 233-250 (2001)
  2. Korea Ministry of Agriculture and Forest. Per capita consumption of cereals per year. Available from: http://www.maf.go.kr. Accessed May 26, 2003
  3. Sagum R, Arcot J. Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose. Food Chem. 70: 107-111 (2000) https://doi.org/10.1016/S0308-8146(00)00041-8
  4. Parchure AA, Kulkarni PR. Effect of food processing treatments on generation of resistant starch. Int. J. Food Sci. Nutr. 48: 257-260 (1997) https://doi.org/10.3109/09637489709028570
  5. Devi K, Geervani P. Rice processing: Effect on dietary fibre components and in vitro starch digeatibility. J. Food Sci. Technol. 37: 315-318 (2000)
  6. Asp NG, van Amelsvoort JMM, Hautvast JGA. Nutritional implications of resistant starch. Nutr. Res. Rev. 9: 1-31 (1996) https://doi.org/10.1079/NRR19960004
  7. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: S33-S50 (1992)
  8. Mangala SL, Udayasankar K. Tharanathan RN. Resistant starch from processed cereals: The influence of amylopectin and noncarbohydrate constituents in its formation. Food Chem. 64: 391- 396 (1999) https://doi.org/10.1016/S0308-8146(98)00142-3
  9. Skrabanja V, Liljebrerg HGM, Hedley CL, Freft I, Bjorck IME. Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in peas (Pisum sativum L.). J. Agric. Food Chem. 47: 2033-2039 (1999) https://doi.org/10.1021/jf981060f
  10. Lauro M, Suortti T, Autio K, Linko P, Poutanen K. Accessibility of barley starch granules to $\alpha$-amylase during different phases of gelatinization. J. Cereal Sci. 17: 125-136 (1993) https://doi.org/10.1006/jcrs.1993.1013
  11. Lauro M, Poutanen K, Forssel P. Effect of partial gelatinization and lipid addition on $\alpha$-amylolysis of barley starch granules. Cereal Chem. 77: 595-601 (2000) https://doi.org/10.1094/CCHEM.2000.77.5.595
  12. Negi A, Boora P, Khetarpaul N. Starch and protein digestibility of newly released moth bran cultivars: Effect of soaking, dehulling, germination and pressure cooking. Nahrung 45: 251-254 (2001) https://doi.org/10.1002/1521-3803(20010801)45:4<251::AID-FOOD251>3.0.CO;2-V
  13. Lee GC, Kim SJ, Koh BK. Effect of roasting condition on the physicochemical properties of rice flour and the quality character- istics of Tarakjuk, Korean J. Food Sci. Technol. 35: 905-913 (2003)
  14. Goni I, Garcia-Diz E, Manas E, Saura-Calixto F. Analysis of resistant starch: A method for foods and food products. Food Chem. 56: 445-449 (1996) https://doi.org/10.1016/0308-8146(95)00222-7
  15. Singh U, Kherdeka MS, Jambunathan R. Studies on Desi and Kabuli chickpea (Cicer arietinum L.) cultivars: The levels of amylase inhibitors, levels of oligosaccharides and in vitro starch digestibility. J. Food Sci. 47: 510-513 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb10113.x
  16. Hsu HW, Vavak DL, Satterlee LD, Miller GA. A multienzyme technique for estimating protein digestibility. J. Food Sci. 42: 1269-1273 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb14476.x
  17. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA, (1990)
  18. Ahmed M, Belfast JL. Effect of various drying procedure on the crystallinity of starch isolated from wheat grains. Starch 30: S78-79 (1978) https://doi.org/10.1002/star.19780300303
  19. Osorio-Diaz P, Bello-Perez LA, Sayago-Ayerdi SG, Benitez-Reyes M del P, Tovar J, Paredes-Lopez O. Effect of processing and storage time on in vitro digestibility and resistant starch content of two bran (Phaseolus vulgaris L.) varieties. J. Sci. Food Agric. 83:1283-1288 (2003) https://doi.org/10.1002/jsfa.1413
  20. Krueger BR, Knutson CA, Inglett GE. Walker CE. A differential scanning calorimetry study on the effect of annealing on gelatinization behavior of corn starch. J. Food Sci. 52: 715-718 (1987) https://doi.org/10.1111/j.1365-2621.1987.tb06709.x
  21. Siljestrom M, Westerlund E, Bjorck I, Holm J, Asp NG. The effects of various thermal processes on dietary fibre and starch content of whole grain wheat and white flour. J. Cereal Sci. 4: 315-323 (1986) https://doi.org/10.1016/S0733-5210(86)80035-2
  22. Saura-Calixto F, Goni I, Bravo l, Manas E. Resistant starch in foods: Modified method for dietary fiber residues. J. Food Sci. 58: 642-645 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb04346.x
  23. Sievert D, Pomeranz Y. Enzyme-resistant starch 1: Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem. 66: 342-347 (1989)
  24. Morrison WR. Lipids in cereal starches-a review. J. Cereal Sci. 8:1-15 (1988) https://doi.org/10.1016/S0733-5210(88)80044-4
  25. Mangala SL, Mahadevamma NGM, Tharanathan RN. Resistant starch from differently processed rice and ragi (Finger millet). Eur. Food Res. Technol. 209: 32-37 (1999) https://doi.org/10.1007/s002170050452
  26. Tovar J, Melito C. Steam-cooking and dry heating produce resistant starch in legumes. J. Agric. Food Chem. 44: 2642-2645 (1996) https://doi.org/10.1021/jf950824d
  27. Mangala SL, Tharanathan BN. Structural studies of resistant starch derived from processed (autoclaved) rice. Eur. Food Res. Technol. 209: 38-42 (1999) https://doi.org/10.1007/s002170050453
  28. Holm J, Bjork I, Ostrowska S, Eliasson AC, Asp NG, Larsson K, Lundquist I, Lund DL. Digestibility of amylose-lipid complexes in vitro and in vivo. Starch 35: 294-297 (1983) https://doi.org/10.1002/star.19830350902
  29. Szczodrak J, Pomeranz Y. Starch-lipid interactions and formation of resistant starch in high-amylose barley. Cereal Chem. 69: 626- 632 (1992)
  30. Czuchajowska Z, Sievert D, Pomeranz Y. Enzyme-resistant starch IV: Effect of complexing lipids. Cereal Chem. 68: 537-542 (1991)
  31. Holm J, Asp NG, Bjorck I. Factors affecting enzymatic degradation of cereal starches in vitro and in vivo. pp. 169-187. In Cereal in a European Context. Morton ID (ed). Ellis Horwood, Chichester, UK (1987)
  32. Holm J, Bjorck I, Sjoberg NG, Asp LB, Lundquist I. Starch availability in vitro and in vivo after flaking, steam-cooking and popping of wheat. J. Cereal Sci. 3: 193-206 (1985) https://doi.org/10.1016/S0733-5210(85)80013-8
  33. Rama RG. Effect of heat on the proteins of groundnut and bengal gram. Ind. J. Nutr. Diet. 11: 268-272 (1974)
  34. Bach KKE, Munck L. Dietary fibre contents and composition of sorghum and sorghum-based foods. J. Cereal Sci. 3: 153-164 (1985) https://doi.org/10.1016/S0733-5210(85)80025-4
  35. Garcia-Risco MR, Ramos M, Lopez-Fandino R. Modifications in milk proteins induced by heat treatment and homogenization and their influence on susceptibility to proteolysis. Int. Dairy J. 12: 679-688 (2002) https://doi.org/10.1016/S0958-6946(02)00060-2