Fermentation of Citrus unshiu Marc. and Functional Characteristics of the Fermented Products

감귤의 발효와 발효산물의 기능적 특성

  • Moon, Sang-Wook (Technology Innovation Center for Life Science, Cheju National University) ;
  • Kang, Shin-Hae (Technology Innovation Center for Life Science, Cheju National University) ;
  • Jin, Young-Joon (Technology Innovation Center for Life Science, Cheju National University) ;
  • Park, Ji-Gweon (Technology Innovation Center for Life Science, Cheju National University) ;
  • Lee, Young-Don (Marine and Environmental Research Institute, Cheju National University) ;
  • Lee, Young-Ki (School of Medicine, Cheju National University) ;
  • Park, Deok-Bae (School of Medicine, Cheju National University) ;
  • Kim, Se-Jae (Technology Innovation Center for Life Science, Cheju National University)
  • 문상욱 (제주대학교 생명과학기술혁신센터) ;
  • 강신해 (제주대학교 생명과학기술혁신센터) ;
  • 진영준 (제주대학교 생명과학기술혁신센터) ;
  • 박지권 (제주대학교 생명과학기술혁신센터) ;
  • 이영돈 (제주대학교 해양과환경연구소) ;
  • 이영기 (제주대학교 의학과) ;
  • 박덕배 (제주대학교 의학과) ;
  • 김세재 (제주대학교 생명과학기술혁신센터)
  • Published : 2004.08.31

Abstract

Functional characteristics of citrus products fermented with lactic acid bacterium and yeast were investigated. Flavonoid composition of fermented citrus extracts increased significantly compared to control, leading to increases of naringenin and hesperetin concentrations. All citrus extracts showed anti-apoptotic effects in HepG2 cells regardless of fermentation, with citrus-fermented products showing greater anti-apoptotic effect and intracellular Reactive Oxygen Species content reduction compared to native citrus extracts. Male Sprague-Dawley rats were orally dosed with native or fermented citrus extracts. Singnificantly higher body weight reductions were observed in higher fermented citrus-dosed (100 mg/kg body weight) group compared to the other groups. Plasma total cholesterol level was slightly, but not significantly, reduced. Fatty liver formation induced by high-fat diet was significantly suppressed in rats administered with fermented citrus extracts. Results suggest fermented citrus extracts have potent anti-apoptotic and anti-oxidative activities in vitro, and inhibitory activity against fatty liver formation by high-fat diet in vivo.

본 연구는 젖산균과 효모에 의해 발효처리한 감귤의 기능적 특성을 파악하고자 수행되었다. 발효감귤 추출물의 항산화도는 발효하지 않은 감귤 추출물과 비교할 때 뚜렷하게 증가하였다. 또한, 대조구와 비교할 때 발효처리한 감귤 추출물에서 플라보노이드 조성변화가 나타났으며, 각각 naringenin, hesperetin의 농도가 증가하였다. 감귤은 발효처리와 상관없이 HepG2 세포의 세포사멸 보호효과를 나타내었으나, 발효처리구에서 세포사멸 보호효과와 ROS(Reactive oxygen species) 생성 감소효과가 더욱 차별적으로 나타났다. 수컷의 Sprague-Dawley rat에 감귤 추출물과 발효감귤 추출물을 경구 투여하였다, 체중은 다른 실험군에 비해 발효감귤 추출물의 고농도 투여(100 mg/kg 체중)에서 유의적으로 감소하였고 혈장 콜레스테롤 함량은 다소 감소하였으나, 다른 실험구에 비하여 유의적인 차이는 나타나지 않았다. 고지방 식이에 의해 유도된 지방간 형성은 발효 감귤 추출물 투여에 의해 유의하게 감소되었다. 본 연구 결과는 발효 감귤 추출물은 세포수준에서 감귤추출물에 비해 증강된 세포 사멸 보호효과와 항산화 효과를 나타내며, 동물실험에서는 고 지방 식이에 의해 유도된 지방간 형성을 저해하는 효과를 보여 주었다.

Keywords

References

  1. Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS, Choi MS. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: choles-terol transferase are lower in rats fed citrus peel extract or a mix-ture of citrus bioflavonoids. J. Nutr. 29: 1182-1185 (1999)
  2. Chen YT, Zheng RL, Jia ZJ, Ju Y. Flavonoids as superoxide scavengers and antioxidants. Free Rad. Biol. Med. 9: 19-21 (1990)
  3. Cook NC, Samman S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 66-76 (1996) https://doi.org/10.1016/0955-2863(95)00168-9
  4. Damon P, Flandre O, Michel F, Perdrix L, Lavrid C, Crastes de Paulet A. Effect of chronic treatment with a purified flavonoid fraction on inflammatory granuloma in the rat. Study of prostag-landin E2 and $F2\alpha$ and thromboxane B2 release and histological changes. Arzneimittel Forschung 37: 1449-1153 (1987)
  5. Emim JA, Oliviera AB, Lapa AJ. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J. Pharm. Pharmacol. 46: 118-122 (1994) https://doi.org/10.1111/j.2042-7158.1994.tb03753.x
  6. Francis AR, Shetty TK, Bhattacharya RK. Modulating effect of plant flavonoids on the mutagenecity of N-methyl-N-nitro-Nnitrosoguanidine. Carcinogenesis 10: 1953-1955 (1989) https://doi.org/10.1093/carcin/10.10.1953
  7. Guengerich FP, Kim DM. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11: 2275-2279 (1990) https://doi.org/10.1093/carcin/11.12.2275
  8. Guthrie N, Carroll KK. Inhibition of mammary cancer by citrus flavonoids. pp. 227-236. In: Flavonoids in the Living System. Manthey JA, Buslig BS (eds). Plenum, New York, NY, USA (1998)
  9. Chung SK, Kim SH, Choi YH, Song EY, Kim SH. Status of citrus fruit production and view of utilization in Cheju. Food Ind. Nutr. 5(2): 42-52 (2000)
  10. AOAC. Official Methods of Analysis of AOAC Intl. 15th ed. Method 994. Association of Official Analytical Communities, Washigton, DC, USA (1990)
  11. Kim CJ. Screening of Physiologically Active Substance. Jayou Academy, Seoul, Korea. pp. 325-338 (1996)
  12. Kim DH, Jung EA, Sohng IS, Han JA, Kim TH, Han MJ. Intestinal bacteria metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21: 17-23 (1998) https://doi.org/10.1007/BF03216747
  13. Han SS, Lee CK, Kim YS. Antimicrobial effects of naringenin alone and in combination with related flavonoids. Yakhak Hoeji 35: 407-411 (1992)
  14. Yoshio S. Bactericidal, paramedicidal and spermatocidal actions of some flavonoids. GifuIka Daigaku Kiyo 10: 123-130 (1963)
  15. Hosoda K, Noguchi M, Chen YP, Hsu HY. Studies on the preparation and evaluation of Kijitsu, the immature citrus fruits. IV. Biological activities of immature fruits of different citrus species. Yakugaku Zasshi 111: 188-192(1991) https://doi.org/10.1248/yakushi1947.111.3_188
  16. Galati EM, Monforte MT, Kirjavainen S, Foestieri AM, Trovato A, Tripodo MM. Biological effects of hesperidin, a citrus flavonoids (Note 1): Anti inflammatory and analgestic activity. Pharmacology 40: 709-712 (1994)
  17. Galley P, Thiollet M. A double blind placebo controlled trial of a new venoactive flavonoids fraction in the treatment of symptomatic capillary. Int. Angiol. 12: 69-72 (1993)
  18. Kurata Y, Fukushima S, Hagiwara A, Ito H, Ogawa K, Ito N. Carcinogenicity study of methyl hesperidin in B6C3F1 mice. Food Chem. Toxicol. 28: 613-618 (1990) https://doi.org/10.1016/0278-6915(90)90168-M
  19. Kawashima K, Nakaura S, Usami M, Yamaguchi M, Tanaka S, Takanaka A, Omori Y. Effect of methyl hesperidin on prenatal developments of rats. Bull. Natl. Inst. Hyg. Sci. Tokyo. 104: 64-68 (1986)
  20. Kim HK, Jeong TS, Lee MK, Park YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta 327: 129-137 (2003) https://doi.org/10.1016/S0009-8981(02)00344-3
  21. Kurowska EM, Borradaile NM, Spence MD, Carroll KK.Hypocholesterolemic effects of dietary citrus juices in rabbits. Nutr. Res. 20: 121-129 (2000) https://doi.org/10.1016/S0271-5317(99)00144-X
  22. Kurowska EM, Spence JD, Jordan J, Wetmore S, Freeman DJ, Piche LA, Serratore P. HDL-cholesterol-raising effect of orange juice in subects with hypercholesterolemia. Am. J. Clin. Nutr. 72: 1095-1100 (2000) https://doi.org/10.1093/ajcn/72.5.1095
  23. Seo HJ, Jeong KS, Lee MK, Park YB, Jung U, Kim HJ, Choi MS. Role of naringin supplement in regulation of lipid and ethanol metabolism in rats. Life Sci. 73: 993-946 (2003) https://doi.org/10.1016/S0024-3205(03)00358-8
  24. Bok SH, Shin YW, Bae KH, Jeong TS, Kwon YK, Park YB, Choi MS. Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol red rats. Nutr. Res. 20: 1007-1015 (2000) https://doi.org/10.1016/S0271-5317(00)00191-3