Production of Sphingolipids by Submerged Culture of Ganoderma lucidum and Cutaneous Hydration Effect

Ganoderma lucidum 균사체의 액체배양의 의한 sphingolipids의 생산 및 피부 보습 효과

  • Ryu, Il-Hwan (College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Jung-Enn (College of Life Science and Natural Resources, Wonkwang University) ;
  • Lee, Kap-Sang (College of Life Science and Natural Resources, Wonkwang University)
  • 류일환 (원광대학교 생명자원과학대학) ;
  • 김정은 (원광대학교 생명자원과학대학) ;
  • 이갑상 (원광대학교 생명자원과학대학)
  • Published : 2004.08.31

Abstract

Sphingolipid production was investigated through Ganoderma lucidum-submerged cultivation. Crude sphingolipid obtained from G. lucidum was purified by methanol precipitation, Dowex AG DW-X8 (H+ form) cation exchange chromatography, and preparative thin layer chromatography, Structure and functionalities of purified sphingolipid were elucidated including cutaneous hydration effect. Possibility of use as cosmetics material and new biomaterial was explored. Production was 0.4 g/L at 1% yield. Purified sphingolipid was identified as D-ribo-1,3,4-trihydroxy-2-aminoocta decan through UV/VIS, FT-IR, and $^1H-NMR$. Sphingolipids increased skinmate value for cutaneous hydration effect by 20% at $500\;{\mu}g/mL$ and decreased skin roughness at $100\;{\mu}g/mL$. Results suggest shingolipids from G. lucidum are effective for cutaneous hydration and improvement of skin roughness.

Ganoderma lucidum 균사체의 액체 배양을 통하여 균체 내 sphingolipid를 분리 정제하여 그 구조를 규명하였으며, 피부보습을 비롯한 각종의 기능성을 탐색하여 화장품 소재 및 새로운 생물 산업소재의 이용가능성을 검토한 결과 배양한 Ganoderma lucidum로부터 일련의 과정을 통하여 crude sphingolipids를 얻고, methanol침전, Dowex AG $50W-X8(H^+\;form)$ cation exchange chromatography 및 preparative thin layer chromatography를 행하여 sphingolipids를 분리하였다. 생산량은 0.4g/L였으며, 수율은 1%였다. UV/VIS spectrum, FT-IR 및 1H-NMR 분석을 행하여 구조를 해석한 결과 phytosphingosine 유도체로 판명되었다. 이 phytosphingosine 유도체의 피부에 대한 보습효과는 $500{\mu}g/mL$ 이상의 농도에서 약 20% 정도 skinmate 값이 증가하였으며, $100{\mu}/mL$ 이상의 농도에서 거칠기 감소에 유의한 결과를 나타내었다. 이상의 결과로부터 Ganoderma lucidum이 생산하는 sphingolipids는 피부보습 및 거칠기 개선에 유의성이 확인되어 화장품 소재 및 새로운 생물 산업소재로서의 이용가능성이 높다고 할 수 있다.

Keywords

References

  1. Hunnun YA, Bell RM. Lysosphingolipids inhibits protein kinase C: Implications for sphingolipidoses. Science 243: 500-507 (1989) https://doi.org/10.1126/science.2643164
  2. Thudichum J, Schekman R. Two distinct subfractions in isolated Saccharomyces cerevisiae plasma membranes. J. Bacteriol. 156: 222-229 (1983)
  3. Ghosh TK, Bian J, Gill DL. Intracellual calcium release mediated by sphingosine derivatives generated in cell. Science 248: 1653-1656 (1990) https://doi.org/10.1126/science.2163543
  4. Hakomri S. Bifunctional role of glycosphingolipids modulators for transmembrane signaling and mediators for cellular interactions. J. Biol. Chem. 265: 18713-18716 (1990)
  5. Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 243: 500-507 (1989) https://doi.org/10.1126/science.2643164
  6. Hannun YA, Loomis CR, Merrill AH, Bell RM. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem. 261: 12604-12609 (1986)
  7. Elias PM. Lipid and the epidermal permeability barrier. Arch. Dermatol. Res. 27: 95-117 (1981)
  8. Elias PM. Lipid and the epidermal lipid, membranes and keratinization. Int. J. Dermatol. 20: 1-19 (1981) https://doi.org/10.1111/j.1365-4362.1981.tb05278.x
  9. Holleran WM, Williams ML, Gao WN, Elias PM. Serine palmitoyl transferase activity in cultured human keatinocyte. J. Lipid Res. 31: 1655-1661 (1990)
  10. Bouwatra JA, Gooris GS, Dubblelaar FE. Role of ceramide in the molecular oranization of the stratum corneum. Lipids 39: 186-196 (1998)
  11. Werz PW, Downing DT. Sphingosine in human epidermis. J. Invest. Dermatol. 94: 159-161 (1990) https://doi.org/10.1111/1523-1747.ep12874122
  12. Menon GK, Norlen L. Stratum corneum ceramides and their role in skin barrier function. pp. 31-60. In: Skin Moisturization. Leydenm JJ, Rawlings AV (eds). Marcel Dekker Inc., New York, NY, USA (2002)
  13. Yang SM, Pack CG, Back SW, Rim GH, Kim NK. Production of sphingosome by homogenizer and biological activity of sphingolipid. In: Abstracts of Korean J. Biotechnol. Bioeng. Ann. Meeting. KBB, Seoul, Korea (2000)
  14. Moon DC, Hwang KH, Choi KR, Lee YM, Kim JH, Kim YH., Kim MR, Zee OP. Constituents of ceramide of a native mushroom, Phelliuns ribis in Korea. Korean J. Anal. Sci. 7: 547-554 (1994)
  15. Chou G. Functional and clinical effect of ceramide from rice, Food Develop. 35: 56-59 (2002)
  16. Imokawa G, Abe A, Kumi J, Higaki Y. Decreased level of ceramides in stratum of atopic dermatitis: an etoilgoic factor in atopic dry skin. J. Invest. Dermatol. 96: 523-530 (1991) https://doi.org/10.1111/1523-1747.ep12470233
  17. Suhr KB, Lee JH, Pack JK. The role of sphingolipid in atopic dermatitis. Korean J. Invest. Dermatol. 9: 171-176 (2002)
  18. Pamela EB, Yuneng OL, Shawan MM, Catherin MS, Daniel VL. Complex sphingolipid synthesis in plant: Characterization of inositolphosphoryl ceramide synthesis activity in bean microsome. Arch. Biochem. Biophys. 417: 219-226 (2003) https://doi.org/10.1016/S0003-9861(03)00339-4
  19. Sapporo Beer Co., Production of Sphingolipid, JP 2000-80394. Sapporo Beer Co., Sapporo, Japan (2000)
  20. Sapporo Beer Co. Production of barley embryo oil with plant ceramide derivate, JP 2000-1193238. Sapporo Beer Co., Sapporo, Japan (2000)
  21. Kato M, Mito Y, Tanaka BK, Watanabe K, Ueno K. Sphingolipid composition in Bateroides species. Anaerobe 1: 135-139 (1995) https://doi.org/10.1006/anae.1995.1009
  22. Miyagawa E, Azuma R, Suto T, Yano I. Distribution of sphingolipids in Bacteroides species. J. Gen. Appl. Microbiol. 24: 341-348 (1978) https://doi.org/10.2323/jgam.24.341
  23. Wilkinson SG. Gram-negative bateria. pp. 299-488. In: Microbial Lipids. Ratledge C, Wilkinson SG (eds). Academic Press, London, UK (1988)
  24. Yano I, Tomiyasu I, Yabuuchi E. Long chain base composition of strains of three species of Sphingobacterium gen. nov. FEMS Microbiol. Lett. 15: 303-307 (2000) https://doi.org/10.1111/j.1574-6968.1982.tb00239.x
  25. Yabuuchi E, Kasako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomanas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkor et al., 1997) comb. nov. and emendation of the genus Sphingomonas. Microbiol. Immunol. 43: 339-349 (1999) https://doi.org/10.1111/j.1348-0421.1999.tb02414.x
  26. Gerald WB, Robert LL. Biosynthesis of phosphoinositol containing sphingolipids from phosphodidylinositol by a membrane preparation from Saccharomyces cerecisiae. J. Bacteriol. 142: 747-754 (1980)
  27. Pattorn JL, Lester RL. The phosphoinositol sphingolipids of Saccharomyces ceravisiae are highly localized in the plasma membrane. J. Bacteriol. 173: 3101-3108 (1991) https://doi.org/10.1128/jb.173.10.3101-3108.1991
  28. Nancy CW, Peter JN. Purification and characterization of constitutive secretory vesicle from yeast. J. Cell. Biol. 105: 163-174 (1987) https://doi.org/10.1083/jcb.105.1.163
  29. Gerald BW, Robert CD, Robert LL. Heat induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis. J. Biol. Chem. 273: 7235-7243 (1998) https://doi.org/10.1074/jbc.273.13.7235
  30. Gray MJ, Adrienne R, Tanya W, Cungui M, Lina O. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272: 32566-32572 (1997) https://doi.org/10.1074/jbc.272.51.32566
  31. Rupcic J, Blagovic B, Maric V. Cell lipid of Candida lipolytica yeast grown on methanol. J. Chromatogr. 755: 75-80 (1996) https://doi.org/10.1016/S0021-9673(96)00579-1
  32. Gerald BW, Robert CC, Robert LL. Isolation and composition of Inositol phosphorylceramide-type sphingolipid of hyphal form of Candida albicans. J. Bacteriol. 178: 6233-6226 (1996) https://doi.org/10.1128/jb.178.21.6233-6237.1996
  33. Gao JM, Yang X, Wang CY, Liu JK. A new sphingolipid from the fungus Armillaria mellea. Fitorapia 72: 858-864 (2001) https://doi.org/10.1016/S0367-326X(01)00319-7