A Study on the Synthesis of Eugenolchitosan and Safrolechitosan

Eugenol과 safrole을 부가한 chitosan 유도체 합성

  • Kim, Je-Jung (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Jung, Byung-Ok (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Chang, Pahn-Shick (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Park, Dong-Ki (Department of Applied Biology and Chemistry, Konkuk University)
  • 김제중 (서울산업대학교 식품공학과) ;
  • 정병옥 (서울산업대학교 식품공학과) ;
  • 장판식 (서울산업대학교 식품공학과) ;
  • 박동기 (건국대학교 응용생물화학과)
  • Published : 2004.06.30

Abstract

Safrolechitosan (SaCs) and eugenolchitosan (EuCs) were synthesized and characterized to increase water solubility and functionality of chitosan. Product impurities were removed by Soxhlet apparatus using methanol to obtain final product with high purity. Using Ubbelohde viscometer, molecular weights of chitosan, EuCs, and SaCs were determined as $1.2{\times}10^{5}\;Da,\;7.8{\times}10^{5},\;and\;7.5{\times}10^{5}\;Da,\;respectively$. IR spectrum of SaCs revealed chemical shift of amide II band ($1,553cm^{-1}$) of chitosan grafted by safrole caused by generation of covalent bond between primary amino of chitosan and double bond of safrole. Due to graft reaction of safrole onto chitosan, vinyl bands ($1,611\;and\;1,442cm^{-1}$) of safrole disappeared. In graft reaction of eugenol onto chitosan, shift of amide II band ($1,553cm^{-1}$) and disappearance of vinyl band were observed. On $^{1}H-NMR$ spectrum of EuCs, $H_{2}C=CH-$ peak in eugenol (monomer) disappeared, whereas $-H_{2}C-CH_{2}-$ peak appeared. Above results indicate safrole and eugenol were successfully grafted onto chitosan.

신소재로 각광 받고 있는 chitosan의 낮은 수용성을 극복하기 위하여 chitosan 유도체인 safrolechitosan(SaCs) 및 eugenolchitosan(EuCs)을 제조하고, Ubbelohde 점도계를 사용하여 이들의 점도평균분자량을 측정한 결과, chitosan 및 chitosan유도체인 EuCs와 SaCs의 경우 각각 $1.2{\times}10^{5}\;Da,\;7.8{\times}10^{5}\;Da$$7.5{\times}10^{5}\;Da$인 것으로 확인되었다. Chitosan과 chitosan유도체의 구조분석을 위한 IR spectrum에서 SaCs의 경우, safrole의 공유결합에 의한 chitosan내 amine기와의 반응으로 인하여 순수 chitosau보다 amide II 흡수띠가 $1,553cm^{-1}$으로 이동함을 알 수 있었는데, 이것은 chitosan내의 1차 amine기와 safrole의 이중결합이 반응하여 공유결합을 형성함으로써 흡수띠의 이동현상이 나타난 결과이다. 또한, safrole이 반응하면서 safrole내의 vinyl기를 의미하는 특징적인 peak인 C=C 및 $H_{2}C=$$1,611cm^{-1}$$1,442cm^{-1}$에서의 흡수띠가 사라졌으며, EuCs의 경우에도 반응물질로 사용된 eugenol내의 vinyl기를 나타내는 $1,612cm^{-1}$$1,434cm^{-1}$에서의 흡수띠가 사라짐을 확인하였다. 또한 $^{1}H-NMR\;spectrum$을 확인한 결과, 합성유도체의 경우 safrole과 eugenol 간량체의 5.7-6.0ppm에서 나타난 이중결합($H_{2}C=CH-$) peak가 사라지고, SaCs는 2.1-2.2ppm에서, 그리고 EuCs는 1.9와 2.2ppm에서 단일결합($-CH_{2}-CH_{2}-$)의 peak가 생성됨을 알 수 있었으며, safrole과 eugenol이 chitosan에 그라프트된 후 safrole과 eugenol의 영향으로 chitosan내의 $H_{3}-H_{6}$의 수소 숫자가 상대적으로 감소하여 3.1-3.9ppm에서 나타나는 peak의 크기가 작아짐도 확인하였다. 이상의 결과들을 종합해 볼때, SaCs 및 EuCs를 합성하기 위한 그라프트 반응이 정상적으로 일어났음을 알 수 있었다.

Keywords

References

  1. Sudarshan NR, Hoover DG, Knorr D. Antimicrobial action of chitosan. Food Biotechnol. 6: 157-272 (1992)
  2. Okuda H, Kato K, Tsujita T. Antihypertensive and antihypertensive actions of chitosan. J. Chitin Chitosan 2: 49-59 (1997)
  3. Kim SK, Teon YJ. Bioactivities of chitin and chitosan(II)-Antitumor activities by immunology function of chitin, chitosan oligosaccharides. J. Chitin Chitosan 2: 3-14 (1997)
  4. uzuki K, Tokoro A, Okawa Y, Suzuki S, Suzuki M. Enhancing effects of N-acetyl-chitooligosaccharides on the active oxygengenerating and microbicidal activities of peritoneal exudate cells in mice. Chem. Pharm. Bull. 33: 886-888 (1985) https://doi.org/10.1248/cpb.33.886
  5. Chang SM, Rho SH, Park SD. Hanyak Botanical Resouces. Hak Mun Publishing Co., Seoul, Korea. pp. 239-242, 484-486 (1999)
  6. Lee JR. Cho-Sun Medical Plant(2). Han Kuk Publishing Co., Seoul, Korea. pp. 19, 83-84 (1999)
  7. Hume WR. Effect of eugenol on constrictor responses in blood vessels of the rabbit ear. J. Dent. Res. 62: 1013-1015 (1983) https://doi.org/10.1177/00220345830620090301
  8. Ozeki M. The effects of eugenol on the nerve and muscle in crayfish. Comp. Biochem. Physiol. 50: 183-191 (1975)
  9. Kozam G. The effect of eugenol on nerve transmission. Oral Surg. Oral Med. Oral Pathol. 44: 799-805 (1977) https://doi.org/10.1016/0030-4220(77)90390-5
  10. ung BO, Kim CH, Chio KS, Lee YM, Kim JJ. Preparation of amphiphilic chitosan and their antimicrobial activities. J. Polym. Sci. 72: 1713-1719 (1999)
  11. Cho SK, Jung BO, Kim JJ, Chio KS, Lee YM. Effect of wastewater treatment of partially deacetylated chitosan. J. Korean Ind. Eng. Chem. 5: 899-903 (1994)
  12. Wang W, Bo S, Qin W. Determination of the Mark Houwink equation for chitosans with degrees of deacetylation. Int. J. Biol. Macromol. 13: 281-285 (1991) https://doi.org/10.1016/0141-8130(91)90027-R
  13. hen XG, Park HJ. Chemical characteristics of O-carboxylmethyl chitosan related to the preparation conditions. Carbohydr. Polym. 53: 355-359 (2003) https://doi.org/10.1016/S0144-8617(03)00051-1
  14. Zhang C, Ping Q, Zang H, Shen J. Synthesis and characterization of water-soluble O-succinyl-chitosan. Eur. Polym. J. 39: 1629- 1634 (2003) https://doi.org/10.1016/S0014-3057(03)00068-5
  15. Prashanth KVH, Tharanathan RN. Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydr. Polym. 54: 343-351 (2003) https://doi.org/10.1016/S0144-8617(03)00191-7
  16. Lavertu M, Xia ZA, Serreqi N, Rodrigues A, Wang D, Buschmann MD, Gupta A. A validated 1H NMR method of the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 32: 1149-1158 (2003) https://doi.org/10.1016/S0731-7085(03)00155-9