Development of Predictive Growth Model of Vibrio parahaemolyticus Using Mathematical Quantitative Model

수학적 정량평가모델을 이용한 Vibrio parahaemolyticus의 성장 예측모델의 개발

  • Moon, Sung-Yang (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Chang, Tae-Eun (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Woo, Gun-Jo (Korea Food and Drug Administration) ;
  • Shin, Il-Shik (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • 문성양 (강릉대학교 해양생명공학부) ;
  • 장태은 (강릉대학교 해양생명공학부) ;
  • 우건조 (식품의약품안전청) ;
  • 신일식 (강릉대학교 해양생명공학부)
  • Published : 2004.04.30

Abstract

Predictive growth model of Vibrio parahaemolyticus in modified surimi-based imitation crab broth was investigated. Growth curves of V. parahaemolyticus were obtained by measuring cell concentration in culture broth under different conditions ($Initial\;cell\;level,\;1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}\;colony\;forming\;unit\;(CFU)/mL$; temperature, 15, 25 37, and $40^{\circ}C$; pH 6, 7, and 8) and applying them to Gompertz model. Microbial growth indicators, maximum specific growth rate (k), lag time (LT), and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of V. parahaemolyticus increased with increasing temperature, reaching maximum rate at $37^{\circ}C$. LT and GT were also the shortest at $37^{\circ}C$. pH and initial cell number did not influence k, LT, and GT values significantly (p>0.05). Polynomial model, $k=a{\cdot}\exp(-0.5{\cdot}((T-T_{max}/b)^{2}+((pH-pH_{max)/c^{2}))$, and square root model, ${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$, were developed to express combination effects of temperature and pH under each initial cell number using Gauss-Newton Algorism of Sigma plot 7.0 (SPSS Inc.). Relative coefficients between experimental k and k Predicted by polynomial model were 0.966, 0.979, and 0.965, respectively, at initial cell numbers of $1{\times}10^{2},\;1{\times}10^{3},\;and\;1{\times}10^{4}CFU/mL$, while that between experimental k and k Predicted by square root model was 0.977. Results revealed growth of V. parahaemolyticus was mainly affected by temperature, and square root model showing effect of temperature was more credible than polynomial model for prediction of V. parahaemolyticus growth.

수산식품에서 문제가 되는 식중독 균인 V. parahaemolyticus를 대상으로 온도, pH 및 초기균수에 따른 균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. $1.0{\times}10^{2},\;1.0{\times}10^{3},\;1.0{\times}10^{4}\;CFU/mL$의 각 초기균수 조건에서 실험치와 예측치의 상관계수는 각각 0.966, 0.979, 0.965으로 나타났다. 또한, 초기균수를 고려하지 않은 모델식은 상관계수가 0.966으로 다음과 같이 나타났다. Polynomial model: $$k=1.10{\cdot}\exp(-0.5(((T-34.14)/9.09)^{2}+((pH-6.59)/4.68)^{2}))$$ 균의 증식 지표치인 최대증식속도상수 k는 온도에 지배적인 영향을 받았으며, pH 및 초기균수에 따른 유의적인 차이는 없었으므로 (P>0.05), k와 온도와의 관계식인 square root model로 나타내었다. Square root model: $${\sqrt{k}\;0.06(T-9.55)[1-\exp(0.07(T-49.98))]$$ V. parahaemolyticus의 경우, square root model에 의한 실험치와 예측치의 상관계수는 0.977로 polynomial model보다 높은 적용성을 나타내었다.

Keywords

References

  1. Ross T, McMeekin TA. Predictive microbiology. Int. J. Food Microbiol. 23: 241-264 (1994) https://doi.org/10.1016/0168-1605(94)90155-4
  2. Coleman ME, Marks HM. Qualitative and quantitative risk assessment. Food Control 10: 289-297 (1999) https://doi.org/10.1016/S0956-7135(99)00052-3
  3. Baker DA. Application of modelling in HACCP plan development. Int. J. Food Microbiol. 25: 251-261 (1995) https://doi.org/10.1016/0168-1605(95)00143-8
  4. Notermans S, Gallhoff G, Zwitering MH, Mead GC. The HACCP concept: specification of criteria using quantitative risk assesment. Food Microbiol. 12: 81-90 (1995) https://doi.org/10.1016/S0740-0020(95)80082-4
  5. Ross T, McMeekin TA. Predictive microbiology. Int. J. Food Microbiol. 23: 241-264 (1994) https://doi.org/10.1016/0168-1605(94)90155-4
  6. Yano N. Predictive Microbiology and its application in food industry. Jpn. J. Food Microbiol. 15: 81-87 (1998) https://doi.org/10.5803/jsfm.15.81
  7. AOAC. Official Methods of Analysis. Method 940.36. Association of Official Analytical Chemists, Arlington, VA, USA (2000)
  8. Ratkowsky DA, Ross T. Modelling the bacterial growth/no growth interface. Lett. Appl. Microbiol. 20: 29-33 (1995) https://doi.org/10.1111/j.1472-765X.1995.tb00400.x
  9. Duncan DB. Multiple-range and multiple F test. Biometrics 11:1-42(1955) https://doi.org/10.2307/3001478
  10. Miles DW. Predicting the growth of Vibrio parahaemolyticus. BS thesis, University of Tasmania, Tasmania, AU (1994)
  11. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE. Model for bacterial culture growth rate through the entire biokinetic temperature range, J. Bacteriol. 154: 1222-1226 (1983)
  12. Zwietering MH, de Koos JT, Hasenack BE, de Wit JC, van 'T Riet K. Modeling of bacterial growth as a function of temperature. Appl. Environ. Milcobiol. 57: 1094-1101 (1991)
  13. Zwietering MH, Cuppers HGAH, de Wit JC, van 'T Riet K. Evaluation of data transformations and validation of a model for the effect of temperature on bacterial growth. Appl. Environ. Microbiol. 60: 195-203 (1994)
  14. Miles DW, Thomas R, Olley J, Thomas A, McMeekin TA. Development and evaluation of a predictive model for the effect of temperature and water activity on the growth rate of Vibrio parahaemolyticus, Int. J. Food Microbiol. 38: 133-142 (1997) https://doi.org/10.1016/S0168-1605(97)00100-1