Preparation of Bio-degradable Films Using Various Marine Algae Powder

해조분말을 이용한 생분해성 필름의 제조

  • Rhim, Jong-Whan (Department of Food Engineering, Mokpo National University) ;
  • Kim, Ji-Hye (Department of Food Engineering, Mokpo National University)
  • Published : 2004.02.28

Abstract

'Mixing' and 'immersion' $CaCl_{2}$ treatment methods were tested for preparation of bio-degradable films using powders of sea mustard (Undaria pinnatifida) (leaf, stem, and sphorophyll), sweet tanlge (Laminaria japonica), and fusiforme (Hizikia fusiforme) by extracting alginate through acid-alkali extraction method. Except fusiforme powder, flexible, free-standing films were produced by both methods using all marine algae powders tested. Except water solubility (WS), surface color, tensile strength (TS), elongation at break (E), and water vapor permeability (WVP) did not show distinct difference between $CaCl_{2}$, treatment methods. Although TS, WVP, and WS of marine algae powder films were lower than those of alginate films, they indicate potential in application as a new source of bio-degradable packaging materials.

해조분말을 이용하여 산 알칼리 병용법으로 알긴산을 추출하고 필름의 물성 증진을 위하여 두 가지의 $CaCl_{2}$ 처리방법 (즉, $CaCl_{2}$를 필름용액에 직접 첨가하는 방법과 필름을 제조한 후 필름을 $CaCl_{2}$, 용액에 침지하여 가교결합을 유도하는 방법)을 적용하여 생분해성 필름을 제조하고 그 물성을 비교하였다. 사용된 해조분말(미역 잎, 미역줄기, 미역귀, 다시마, 톳)중 톳을 제외하고는 모두 필름이 제조되었다. 이들 해조 필름의 물성에 대한 $CaCl_{2}$ 처리방법의 영향은 수분용해도 외에는 큰 차이를 나타내지 않았다. 비록 이들 해조필름의 인장강도, 투습도, 수분용해도와 같은 필름의 물성이 순수한 알긴산으로 제조한 필름의 물성에 비해 떨어지나 본 연구의 결과는 미이용 해조분말이나 해조가공 부산물로 얻어지는 해조분말을 이용하여 새로운 생분해성 포장소재로 사용할 수 있는 가능성이 있음을 나타냈다.

Keywords

References

  1. Aminabhavi TM, Balundgi RH, Cassidy PE. A review on biodegrdable plastics. Polym. Plast. Technol. Eng. 29: 235-262 (1990) https://doi.org/10.1080/03602559008049843
  2. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10: 52-68 (1999) https://doi.org/10.1016/S0924-2244(99)00019-9
  3. Tuil RV, Paul F, Lawther M, Weber CJ. Properties of biobased packaging materials, pp. 13-44. In: Biobased Packaging Materials for the Food Industry, Status and Perspectives. Weber CJ (ed). The Royal Veterinary and Agricultural University, Cophenhagen, Denmark (2000)
  4. Kaplan DL, Mayer JM, Ball D, McCassie J, Allen AL, Stenhouse PS. Fundamentals of biodegradable polymers, pp. 1-42. In: Biodegradable Polymers and Packaging. Ching C, Kaplan DL, Thomas EL (eds). Technomic Publishing Co., Inc., Lancaster, UK (1993)
  5. Guilbert S, Cuq B, Gontard N. Recent innovations in edible and/or biodegradable packaging materials. Food Add. Contam. 14: 741-751 (1997) https://doi.org/10.1080/02652039709374585
  6. Krochta JM, De Mulder-Johnston C. Edble and biodegradable polymer films: Challenges and opportunities. Food Technol. 51: 61-73 (1997)
  7. Rhim JW, Park SY, Kim MS. Preparation of biodegradable films using glue plants. Food Sci. Biotechnol. 11: 280-284 (2002)
  8. Cao YM, Chang KC. Edible films prepared from water extract of soybeans. J. Food Sci. 67: 1449-1454 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb10304.x
  9. AOAC. Official Methods of Analysis of AOAC. 16th ed. Association of Official Analytical Communities, Arlington, VA, USA (1995)
  10. Nishide E, Kinoshita Y, Anzai H, Uchida N. Distribution of hotwater extractable materials, water-soluble alginate and alkali-soluble alginate in different parts of Undaria pinnatifida. Nippon Suisan Gakkaishi 54: 1619-1622 (1988) https://doi.org/10.2331/suisan.54.1619
  11. Yoon MO. Rheological properties of alginate extracted from seaweeds and isolation of alginate-degradation bacteria. MS thesis, Mokpo National University, Mokpo, Korea (2002)
  12. Pavlath AE, Gossett C, Camirand W, Robertson GH. Ionomeric films of alginic acid. J. Food Sci. 64: 61-63 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb09861.x
  13. Rhim JW, Kim JH, Kim DH. Modification of Na-alginate films by CaCl2 treatment. Korean J. Food Sci. Technol. 35: 217-221 (2003)
  14. Rhim JW. Physical and mechanical properties of water resistant sodium alginate films. Lebensm. -Wiss. u. -Technol. 37: in press (2004)
  15. ASTM. Standard test methods for tensile properties of thin plastic sheeting. Vol. 8.01, pp. 182-190. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA, USA (1995)
  16. ASTM. Standard test methods for water vapor transmission of materials (E96-95). Vol. 4.06, pp. 697-704. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA, USA (1995)
  17. McHugh TH, Avena-Bustillos R, Krochta JM. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  18. Gennadios A, Weller CL, Gooding CH. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21: 395-409 (1994) https://doi.org/10.1016/0260-8774(94)90062-0
  19. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA. Soy protein isolate-dialdehyde starch films. Ind. Crops Prod. 8: 195-203 (1998) https://doi.org/10.1016/S0926-6690(98)00003-X
  20. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1998)
  21. Goo JG, Jo KS, Do JR, Woo SJ. Isolation and purification of fucoidans from Laminaria religiosa and Undaria pinnatifida in Korea. J. Korean Fish. Soc. 28: 227-236 (1995)
  22. Do JR, Kim EM, Koo JG, Jo KS. Dietary fiber contents of marine algae and extraction condition of the fiber. J. Korean Fish. Soc. 30: 291-296 (1997)
  23. Pavlath AE, Voisin A, Robertson GH. Pectin-based biodegradable water insoluble films. Macromol. Symp. 140: 107-113 (1999)