Characteristics of Suspension Containing Single Cells from Watermelon and Muskmelon Treated with Cell Separating Enzymes

식물세포분리효소를 이용한 수박과 참외의 단세포 함유 반응물 특성

  • Published : 2004.02.28

Abstract

Cell-separating enzymes were used to investigate enzymatic maceration of watermelon and muskmelon containing single cells. Watermelon and muskmelon were macerated with Macerozyme A and Sumyzyme MC for 30-120min. Changes in maceration properties such as yields, color, viscosity, total sugar, total pectin, total polyphenol, particle size distribution, minerals, and free amino acids of suspensions after enzymatic disintegration were investigated. Contents of biochemical components in the supernatant of suspensions increased with increasing treatment time. Suspensions containing single cells showed good thermal stability without affecting original qualities. Mineral content of single-cell suspension was higher than those of watermelon and muskmelon juices. Potassium contents of single-cell suspension and juice were 240.8 and 172.7 mg%, respectively. Results suggest single-cell suspensions of watermelon and muskmelon can he utilized as ingredients for new beverages.

수박과 참외의 황용도 증진을 위하여 조직을 개개의 세포로 분리할 수 있는 단세포화 기술을 적용하였다. 그 결과 이들을 시판 식물세포분리효소인 Macerozyme A와 Sumyzyme MC로 30분에서 120분간 반응시간별 단세포 함유 반응물의 특성을 조사하였다. 단세포화로 얻을 수 있는 수율, 반응률, 단세포 함유 반응물의 색도, 점도, 총당, 총펙틴, 총폴리페놀, 무기질, 유리 아미노산 함량을 조사하였으며 또한 분리된 단세포의 형태변화를 입도분포로 조사하였다. 전반적으로 효소반응시간이 경과 할수록 반응물의 성분 함량은 증가하였으나 세포벽에 의하여 내부 구성성분이 보호를 받아 안정하게 유지되는 것으로 나타났다. 수박과 참외의 무기질 함량은 주스보다는 단세포 함유 반응물에서 상대적으로 함량이 높게 나타났다. 참외의 경우 무기질인 K의 함량은 효소반응물과 주스에서 각각 240.8 mg%, 172.7 mg%였다. 본 연구 결과는 수박과 참외로부터 효소반응 물의을 이용하여 새로운 형태의 음료 개발을 위한 기초자료로 활용 가능할 것으로 판단되었다.

Keywords

References

  1. Brett CT, Waldron KW. Physiology and Biochemistry of Plant Cell Walls. Chapman & Hall, London, UK. p. 45 (1996)
  2. Tolbert NE. The Biochemistry of Plants. Vol. 1, Academic Press, New York, NY, USA. pp. 101-116 (1980)
  3. Guillon F, Thibault J, Rombouts FM, Voragen AGJ, Pilnik W. Enzymic hydrolysis of the hairy fragments of sugar beet pectins. Carbohydr. Res. 190: 97 (1989) https://doi.org/10.1016/0008-6215(89)84150-3
  4. Renard CM, Voragen AG, Thibault J, Pilnik W. Studies on apple protopectin. I. Extraction of insoluble pectin by chemical means. Carbohydr. Polym. 12: 9-25 (1990) https://doi.org/10.1016/0144-8617(90)90101-W
  5. Nakamura T, Hours RA, Sakai T. Enzymatic maceration of vegetables with protopectinase. J. Food Sci. 60: 468-472 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb09805.x
  6. Toyama N. A cell separating enzyme as a complementary enzyme to cellulase and its applications in processing of vegetables. J. Ferm. Technol. 43: 683-689 (1965)
  7. Toyama N, Owatashi H. Extraction of green tea components from manufactured tea leaves using cellulase and cell separating enzyme. J. Ferm. Technol. 44: 830-834 (1966)
  8. Zetelaki-Horvath K, Gatai K. Disintegration of vegetable tissues by endo-polygalacturonase. Acta Alimentaria 6: 227-240 (1977)
  9. Zetelaki-Horvath K, Gatai K. Application of endo-polygalacturonase to vegetables and fruits. Acta Alimentaria 6: 355-377 (1977)
  10. Sakai T, Okushima M. Microbial production of pectin from citrus peel. Appl. Environ. Microbiol. 39: 908-912 (1980)
  11. Zetelaki-Horvath K, Urbanyi G. Determination of partical size of vegetable tissue by a sedimentation technique after enzymatic disintegration. Acta Alimentaria 7: 69-78 (1978)
  12. Tantchev SS, Malkki Y, Pessa E, Kinnunen A, Mokkila M. An absorption weighting method for determining the degree of enzymatic maceration in fruit and vegetables. Acta Alimentaria 19: 261-271 (1990)
  13. Zetelaki-Horvath K. Disintegration of vegetable tissues as a function of polygalacturonase concentration and incubation period. Acta Alimentaria 9: 367-382 (1980)
  14. Miguchi S, Araki H, Yamamoto N. Fractination of dietary fiber constituents in vegetables by a sequential extraction procedure. Nippon Shokuhin Kogyo Gakkaishi 35: 405-416 (1988) https://doi.org/10.3136/nskkk1962.35.6_405
  15. Park YK, Kang YH. Enzymatic maceration of vegetables with cell separating enzymes. Korean J. Postharvest Sci. Technol. 7: 184-188 (2000)
  16. Lee DH, Lee SC, Hwang YI. Characteristics of sweet persimmon treated with protopectinase from Bacillus subtilis EK11. J. Korean Soc. Food Sci. Nutr. 32: 29-34 (2003) https://doi.org/10.3746/jkfn.2003.32.1.029
  17. Lee DH, Lee SC, Hwang YI. Processing properties of kiwifruit treated with protopectinase. J. Korean Soc. Food Sci. Nutr. 29: 401-406 (2000)