DOI QR코드

DOI QR Code

Gene Therapy Vectors: A Current Research Insight

유전자치료를 위한 벡터 개발의 연구 동향

  • Son, Eun-Hwa (Dept. of Pharmacognosy Material Development, Samcheok National University) ;
  • Sohn, Eun-Soo (Department of Information Analysis, Korea Institute of Science and Technology Information(KISTI)) ;
  • Pyo, Suhk-Neung (Division of Immunopharmacology, College of Pharmacy, Sungkyunkwan University)
  • 손은화 (삼척국립대학교 생약자원개발학과) ;
  • 손은수 (한국과학기술정보연구원(KISTI) 정보분석부) ;
  • 표석능 (성균관대학교 약학부)
  • Published : 2004.10.20

Abstract

The basic concept underlying gene therapy is that human diseases may be treated by the transfer of genetics material into specific cells of a patient in order to correct or supplement defective genes responsible for disease development. There are several systems that can be used to transfer foreign genetic material into the human body. Both viral and non-viral vectors are developed and evaluated for delivering therapeutic genes. Viral vectors are biological systems derived from naturally evolved viruses capable of transferring their genetics materials into host cells. However, the limitations associated with viral vectors, in terms of their safety, particularly immunogenecity, and their limited capacity of transgenic materials, have encouraged researchers to increasingly focus on non-viral vectors as an alternative to viral vectors. Although non-viral vectors are less efficient than viral ones, they have the advantages of safety, simplicity of preparation and high gene encapsulation capability. This article reviews the most recent studies highlighting the advantages and the limitation of gene delivery systems focused on non-viral systems compared to viral systems.

Keywords

References

  1. E. Marshall, Gene therapy death prompts review of adenovirus vector. Science, 286, 2244-2245 (1999) https://doi.org/10.1126/science.286.5448.2244
  2. E. Marshall, Clinical research. Gene therapy a suspect in leukemia-like disease. Science, 298, 34-35 (2002) https://doi.org/10.1126/science.298.5591.34
  3. A. EI-Aneed, An overview of current delivery systems in cancer gene therapy. J. Control Release., 94, 1-14 (2004) https://doi.org/10.1016/j.jconrel.2003.09.013
  4. L.E. Michael, R.A. Mohammad, W. Jo and M.E. Richard, Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med., 6, 597-602 (2004) https://doi.org/10.1002/jgm.619
  5. G. Daly and Y. Chemajovsky, Recent developments in retroviral-mediated gene transduction. Mol. Ther., 2, 423-434 (2000) https://doi.org/10.1006/mthe.2000.0211
  6. R.J. Rigg, J. Chen, J.S. Dando, S. P. Forestell, I. Plavec and E. Bohnlein, A novel human amphotropic packaging cell line: high titer, complement resistance, and improved safety. Virology, 218, 290-295 (1996) https://doi.org/10.1006/viro.1996.0194
  7. S.H. Chen, H.D. Shine, J.C. Goodman, R.G. Grossman and S.L. Woo, Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci, 91, 3054-3057 (1994) https://doi.org/10.1073/pnas.91.8.3054
  8. G.L. Clayman, A.K. el-Naggar, J.A. Roth, W.W. Zhang, H. Goepfert, D.L. Taylor and T.J. Liu, In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res., 55, 1-6 (1995)
  9. T. Fujiwara, M. Kataoka and N. Tanaka. Adenovirusmediated p53 gene therapy for human cancer. Mol. Urol., 4, 51-54 (2000) https://doi.org/10.1089/10915360050138585
  10. S.J. Tebbutt, Technology evaluation: AAV-CFTR vector, targeted genetics. Curr. Opin. Mol. Ther., 1, 524-529 (1999)
  11. H. Nakai, R.W. Herzog, J.N. Hagstrom, J. Walter, S.H. Kung, E.Y. Yang, S.J. Tai, Y. Iwaki, G.J. Kurtzman, K.J. Fisher, P. Colosi, L.B. Couto and K.A. High, Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood, 91, 4600-4607 (1998)
  12. E. Poeschla, P Corbeau and F. Wong-Staal, Development of HIV vectors for anti-HlV gene therapy. Proc. Natl. Acad. Sci., 93, 11395-11399 (1996) https://doi.org/10.1073/pnas.93.21.11395
  13. E. Gouze, R. Pawliuk, C. Pilapil, J.N. Gouze, C. Fleet, G.D. Palmer, C.H. Evans, P. Leboulch and S.C. Ghivizzani, In vivo gene delivery to synovium by lentiviral vectors. Mol. Ther., 5, 397-404 (2002) https://doi.org/10.1006/mthe.2002.0562
  14. K. Takahashi, T. Luo, Y. Saishin, Y. Saishin, J. Sung, S. Hackett, R.K. Brazzell, M. Kaleko and P.A. Campochiaro, Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther., 13, 1305-1316 (2002) https://doi.org/10.1089/104303402760128531
  15. T.J. Oligino, Q. Yao, S.C. Ghivizzani and P. Robbins, Vector systems for gene transfer to joints. Clin. Orthop., 379 Suppl, S17-30 (2000) https://doi.org/10.1097/00003086-200010001-00004
  16. C. Torrent, C. Jullien, D. Klatzmann, M. Perricaudet and P. Yeh, Transgene amplification and persistence after delivery of retroviral vector and packaging functions with E1/E4-deleted adenoviruses. Cancer Gene Ther., 7, 1135-1144 (2000) https://doi.org/10.1038/sj.cgt.7700212
  17. M. Urashima, H. Suzuki, Y. Yuza, M. Akiyama, N. Ohno, Y. Eto, An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood. 95, 1258-1263 (2000). Erratum in: Blood 95, 3652 (2000)
  18. L.M. Zheng, X. Luo, M. Feng, Z. Li, T. Le, M. Ittensohn, M. Trailsmith, D. Bermudes, S.L. Lin and I.C. King, Tumor amplified protein expression therapy: Salmonella as a tumorselective protein delivery vector. Oncol. Res., 12, 127-135 (2000)
  19. D. Deshpande, P. Blezinger, R. Pillai, J. Duguid, B. Freimark and A. Rolland, Target specific optimization of cationic lipid-based systems for pulmonary gene therapy. Pharm. Res., 15, 1340-1347 (1998) https://doi.org/10.1023/A:1011933117509
  20. F. Liu and L. Huang, Development of non-viral vectors for systemic gene delivery. J. Control Release., 78, 259-266 (2002) https://doi.org/10.1016/S0168-3659(01)00494-1
  21. Y.K. Song and D.Liu, Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration. Biochim. Biophys. Acta., 1372, 141-150 (1998) https://doi.org/10.1016/S0005-2736(98)00054-6
  22. J.J. Wheeler, L. Palmer, M. Ossanlou, I. MacLachlan, R.W. Graham, Y.P. Zhang, M.J. Hope, P. Scherrer and P.R. Cullism, Stabilized plasmid-lipid particles: construction and characterization. Gene Ther., 6, 271-281 (1999) https://doi.org/10.1038/sj.gt.3300821
  23. O. Zelphati, Y. Wang, S. Kitada, J.C. Reed, P.L. FeIgner and J. Corbeil, Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol. Chem., 276, 35103-35110 (2001) https://doi.org/10.1074/jbc.M104920200
  24. P.L. FeIgner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop. G.M. Ringold and M. Danielsen, Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci., 84, 7413-7417 (1987) https://doi.org/10.1073/pnas.84.21.7413
  25. H. Kamiya, H. Akita and H. Harashima, Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discov. Today, 8, 990-996 (2003) https://doi.org/10.1016/S1359-6446(03)02889-7
  26. R.I. Mahato, A. Rolland and E. Tomlinson, Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm. Res., 14, 853-859 (1997) https://doi.org/10.1023/A:1012187414126
  27. K.D. Lee, Y.K. Oh, D.A. Portnoy and J.A. Swanson, Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J Biol. Chem., 271, 7249-7452 (1996) https://doi.org/10.1074/jbc.271.13.7249
  28. D.S. Friend, D. Papahadjopoulos, R.J. Debs, Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta., 1278, 41-50 (1996) https://doi.org/10.1016/0005-2736(95)00219-7
  29. X. Zhou and L. Huang. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta., 1189, 195-203 (1994) https://doi.org/10.1016/0005-2736(94)90066-3
  30. M.S. Hong, S.J. Lim, Y.K. Oh and C.K. Kim. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J. Pharm. Pharmacol., 54, 51-58 (2001) https://doi.org/10.1211/0022357021771913
  31. A. Kichler, C.Leborgne, E. Coeytaux and O. Danos, Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med., 3, 135-144 (2001) https://doi.org/10.1002/jgm.173
  32. A.R. Klemm, D. Young and J.B. Lloyd, Effects of polyethyleneimine on endocytosis and lysosome stability. Biochem. Pharmacol., 56, 41-46 (1998) https://doi.org/10.1016/S0006-2952(98)00098-7
  33. C. Plank, B. Oberhauser, K. Mechtler, C. Koch and E. Wagner, The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 269, 12918-12924 (1994)
  34. E. Wagner, Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev., 38, 279-289 (1999) https://doi.org/10.1016/S0169-409X(99)00033-2
  35. S. Simoes, V. Slepushkin, E. Pretzer, P. Dazin, R. Gaspar, M.C. Pedroso de Lima and N. Duzgunes, Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J. Leukoc. Biol., 65, 270-279 (1999) https://doi.org/10.1002/jlb.65.2.270
  36. T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and Jr. F.C. Szoka, Design, 'synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008-3017 (1997) https://doi.org/10.1021/bi9618474
  37. D. Lechardeur, K.J. Sohn, M. Haardt, P.B. Joshi, M. Monck, R.W. Graham, B. Beatty, J. Squire, H. O'Brodovich and G.L. Lukacs, Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther., 6, 482-497 (1999) https://doi.org/10.1038/sj.gt.3300867
  38. D. Lechardeur and G.L. Lukacs, Intracellular barriers to nonviral gene transfer. Curr. Gene Ther., 2, 183-194 (2002) https://doi.org/10.2174/1566523024605609
  39. W.C. Tseng, F.R. Haselton and T.D. Giorgio, Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta., 1445, 53-64 (1999) https://doi.org/10.1016/S0167-4781(99)00039-1
  40. M.G. Sebestyen, J.J. Ludtke, M.C. Bassik, G. Zhang, V. Budker, E.A. Lukhtanov, J.E. Hagstrom and J.A. Wolff, DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA Nat. Biotechnol., 16, 80-85 (1998) https://doi.org/10.1038/nbt0198-80
  41. M.A. Zanta, P. Belguise-Valladier and J.P. Behr, Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci., 96, 91-96 (1999) https://doi.org/10.1073/pnas.96.1.91
  42. A. Subramanian, P. Ranganathan and S.L. Diamond, Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol., 17, 873-877 (1999) https://doi.org/10.1038/12860
  43. J.J. Ludtke, G. Zhang, M.G. Sebestyen and J.A. Wolff, A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J. Cell Sci., 112, 2033-2041 (1999)
  44. C.K. Chan and D.A. Jans, Using nuclear targeting signals to enhance non-viral gene transfer. Immunol. Cell Biol., 2, 119-130 (2002)
  45. T. Nagasaki, T. Myohoji, T. Tachibana, S. Futaki and S. Tamagaki, Can nuclear localization signals enhance nuclear localization of plasmid DNA Bioconjug. Chem., 14, 282-286 (2003)
  46. R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa and E. Wagner, Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther., 8, 28-40 (2001) https://doi.org/10.1038/sj.gt.3301351
  47. N. Shi, W.M. Pardridge, Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci., 97, 7567-7572 (2000) https://doi.org/10.1073/pnas.130187497
  48. M.A. Monck, A. Mori, D. Lee, P. Tam, J.J. Wheeler, P.R. Cullis and P. Scherrer P, Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J. Drug Target., 7, 439-452 (2000) https://doi.org/10.3109/10611860009102218
  49. H. Kiwada, H. Matsuo and H. Harashima H, Identification of proteins mediating clearance of liposomes using a liver perfusion system. Adv. Drug Deliv. Rev., 32, 61-79 (1998) https://doi.org/10.1016/S0169-409X(97)00132-4
  50. N. Shi, Y. Zhang, C. Zhu, R.J. Boado and W.M. Pardridge, Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci., 98, 12754-12759 (2001) https://doi.org/10.1073/pnas.221450098
  51. S.C. De Smedt, J. Demeester and W.E. Hennink, Cationic polymer based gene delivery systems. Pharm. Res., 17, 113-126 (2000) https://doi.org/10.1023/A:1007548826495
  52. X. Gao and L. Huang, Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry, 35, 1027-1036 (1996) https://doi.org/10.1021/bi952436a
  53. M. Ogris, S. Brunner, S. Schuller, R Kircheis and E. Wagner, PEGylated DNA/transferrin-PEl complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther., 6, 595-605 (1999) https://doi.org/10.1038/sj.gt.3300900
  54. S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont and J.C. Fernandes, Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm., 57, 1-8 (2004) https://doi.org/10.1016/S0939-6411(03)00155-3
  55. Y.K. Oh, J.P. Kim, H. Yoon, J.M. Kim, J.S. Yang and C.K. Kim, Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther., 8, 1587-1592 (2001) https://doi.org/10.1038/sj.gt.3301516
  56. S.G. Martin and J.C. Murray, Gene-transfer systems for human endothelial cells. Adv. Drug Deliv. Rev., 41, 223-233 (2000) https://doi.org/10.1016/S0169-409X(99)00068-X
  57. P.Y. Kuo and W.M. Saltzman, Novel systems for controlled delivery of macromolecules. Crit. Rev. Eukaryot. Gene Expr., 6, 59-73 (1996) https://doi.org/10.1615/CritRevEukarGeneExpr.v6.i1.40
  58. J. Zabner, A.J. Fasbender, T. Moninger, K.A. Poellinger and M.J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid. J. BioI. Chem., 270, 18997-9007 (1995) https://doi.org/10.1074/jbc.270.32.18997
  59. M.C. Garnett, Gene-delivery systems using cationic polymers. Crit. Rev. Ther. Drug Carrier Syst., 16, 147-207 (1999)
  60. D.T. Curiel, E. Wagner, M. Cotten, M.L. Birnstiel, S. Agarwal, C.M. Li, S. Loechel and P.C. Hu, High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum. Gene Ther., 3, 147-154 (1997) https://doi.org/10.1089/hum.1992.3.2-147
  61. A. EI-Aneed, An overview of current delivery systems in cancer gene therapy. J. Control. Release., 94, 1-14 (2004) https://doi.org/10.1016/j.jconrel.2003.09.013
  62. A.M. Haines, A.S. Irvine, A. Mountain, J. Charlesworth, N.A. Farrow, R.D. Husain, H. Hyde, H. Ketteringham, R.H. McDermott, A.F. Mulcahy, T.L. Mustoe, S.C. Reid, M. Rouquette, J.C. Shaw, D.R. Thatcher, J.H. Welsh, D.E. Williams, W. Zauner and R.O. Phillips, CL22 - a novel cationic peptide for efficient transfection of mammalian cells. Gene Ther., 8, 99-110 (2001) https://doi.org/10.1038/sj.gt.3301314
  63. N. Ohmori, T. Niidome, T. Kiyota, S. Lee, G. Sugihara, A. Wada, T. Hirayama and H. Aoyagi, Importance of hydrophobic region in amphiphilic structures of alpha-helical peptides for their gene transfer-ability into cells. Biochem. Biophys. Res. Commun., 245, 259-265 (1998) https://doi.org/10.1006/bbrc.1998.8408
  64. D.L. McKenzie, E. Smiley, K.Y. Kwok and K.G. Rice, Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem., 11, 901-909 (2000) https://doi.org/10.1021/bc000056i
  65. T. Niidome, M. Urakawa, H. Sato, Y. Takahara, T. Anai, T. Hatakayama, A. Wada, T. Hirayama and H. Aoyagi, Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials, 21, 1811-1819 (2000) https://doi.org/10.1016/S0142-9612(00)00076-4
  66. T. Niidome, K. Takaji, M. Urakawa, N. Ohmori, A. Wada, T. Hirayama and H. Aoyagi, Chain length of cationic alpha-helical peptide sufficient for gene delivery into cells. Bioconjug. Chem., 10, 773-780 (1999) https://doi.org/10.1021/bc990012d
  67. H.H. Kim, W.S. Lee, J.M. Yang and S. Shin, Basic peptide system for efficient delivery of foreign genes. Biochim. Biophys. Acta., 1640, 129-36 (2003) https://doi.org/10.1016/S0167-4889(03)00028-4
  68. C. Plank, M.X. Tang, A.R. Wolfe, Jr. F.C. Szoka, Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther., 10, 319-32 (1999) https://doi.org/10.1089/10430349950019101
  69. K. Rittner, A. Benavente,A. Bompard-Sorlet, F. Heitz, G. Divita, R. Brasseur and E. Jacobs, New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther., 5, 104-114 (2002) https://doi.org/10.1006/mthe.2002.0523
  70. P. Yotnda, D.H. Chen, W. Chiu, P.A Piedra, A. Davis, N.S. Templeton and M.K. Brenner, Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol. Ther., 5, 233-241 (2002) https://doi.org/10.1006/mthe.2002.0545
  71. J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani and P.L. FeIgner, Direct gene transfer into mouse muscle in vivo. Science, 247, 1465-1468 (1990) https://doi.org/10.1126/science.1690918
  72. K.A. Choate and P.A. Khavari, Direct cutaneous gene delivery in a human genetic skin disease. Hum. Gene Ther., 8, 1659-1665 (1997) https://doi.org/10.1089/hum.1997.8.14-1659
  73. J.F Symes, Gene therapy for ischemic heart disease: therapeutic potential. Am. J. Cardiovasc. Drugs, 1, 159-166 (2001) https://doi.org/10.2165/00129784-200101030-00001
  74. E. Teiger, I. Deprez, V. Fataccioli, S. Champagne, J.L. Dubois-Rande, M. Eloit and S. Adnot, Gene therapy in heart disease. Biomed. Pharmacother., 55, 148-154 (2001) https://doi.org/10.1016/S0753-3322(01)00040-3
  75. N. Somia and I.M. Verma, Gene therapy: trials and tribulations. Nat. Rev. Genet., 1, 91-99 (2000)
  76. D. Ferber, Gene therapy. Safer and virus-free. Science, 294, 1638-1642 (2001) https://doi.org/10.1126/science.294.5547.1638