References
- E. Marshall, Gene therapy death prompts review of adenovirus vector. Science, 286, 2244-2245 (1999) https://doi.org/10.1126/science.286.5448.2244
- E. Marshall, Clinical research. Gene therapy a suspect in leukemia-like disease. Science, 298, 34-35 (2002) https://doi.org/10.1126/science.298.5591.34
- A. EI-Aneed, An overview of current delivery systems in cancer gene therapy. J. Control Release., 94, 1-14 (2004) https://doi.org/10.1016/j.jconrel.2003.09.013
- L.E. Michael, R.A. Mohammad, W. Jo and M.E. Richard, Gene therapy clinical trials worldwide 1989-2004-an overview. J. Gene Med., 6, 597-602 (2004) https://doi.org/10.1002/jgm.619
- G. Daly and Y. Chemajovsky, Recent developments in retroviral-mediated gene transduction. Mol. Ther., 2, 423-434 (2000) https://doi.org/10.1006/mthe.2000.0211
- R.J. Rigg, J. Chen, J.S. Dando, S. P. Forestell, I. Plavec and E. Bohnlein, A novel human amphotropic packaging cell line: high titer, complement resistance, and improved safety. Virology, 218, 290-295 (1996) https://doi.org/10.1006/viro.1996.0194
- S.H. Chen, H.D. Shine, J.C. Goodman, R.G. Grossman and S.L. Woo, Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci, 91, 3054-3057 (1994) https://doi.org/10.1073/pnas.91.8.3054
- G.L. Clayman, A.K. el-Naggar, J.A. Roth, W.W. Zhang, H. Goepfert, D.L. Taylor and T.J. Liu, In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res., 55, 1-6 (1995)
- T. Fujiwara, M. Kataoka and N. Tanaka. Adenovirusmediated p53 gene therapy for human cancer. Mol. Urol., 4, 51-54 (2000) https://doi.org/10.1089/10915360050138585
- S.J. Tebbutt, Technology evaluation: AAV-CFTR vector, targeted genetics. Curr. Opin. Mol. Ther., 1, 524-529 (1999)
- H. Nakai, R.W. Herzog, J.N. Hagstrom, J. Walter, S.H. Kung, E.Y. Yang, S.J. Tai, Y. Iwaki, G.J. Kurtzman, K.J. Fisher, P. Colosi, L.B. Couto and K.A. High, Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood, 91, 4600-4607 (1998)
- E. Poeschla, P Corbeau and F. Wong-Staal, Development of HIV vectors for anti-HlV gene therapy. Proc. Natl. Acad. Sci., 93, 11395-11399 (1996) https://doi.org/10.1073/pnas.93.21.11395
- E. Gouze, R. Pawliuk, C. Pilapil, J.N. Gouze, C. Fleet, G.D. Palmer, C.H. Evans, P. Leboulch and S.C. Ghivizzani, In vivo gene delivery to synovium by lentiviral vectors. Mol. Ther., 5, 397-404 (2002) https://doi.org/10.1006/mthe.2002.0562
- K. Takahashi, T. Luo, Y. Saishin, Y. Saishin, J. Sung, S. Hackett, R.K. Brazzell, M. Kaleko and P.A. Campochiaro, Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther., 13, 1305-1316 (2002) https://doi.org/10.1089/104303402760128531
- T.J. Oligino, Q. Yao, S.C. Ghivizzani and P. Robbins, Vector systems for gene transfer to joints. Clin. Orthop., 379 Suppl, S17-30 (2000) https://doi.org/10.1097/00003086-200010001-00004
- C. Torrent, C. Jullien, D. Klatzmann, M. Perricaudet and P. Yeh, Transgene amplification and persistence after delivery of retroviral vector and packaging functions with E1/E4-deleted adenoviruses. Cancer Gene Ther., 7, 1135-1144 (2000) https://doi.org/10.1038/sj.cgt.7700212
- M. Urashima, H. Suzuki, Y. Yuza, M. Akiyama, N. Ohno, Y. Eto, An oral CD40 ligand gene therapy against lymphoma using attenuated Salmonella typhimurium. Blood. 95, 1258-1263 (2000). Erratum in: Blood 95, 3652 (2000)
- L.M. Zheng, X. Luo, M. Feng, Z. Li, T. Le, M. Ittensohn, M. Trailsmith, D. Bermudes, S.L. Lin and I.C. King, Tumor amplified protein expression therapy: Salmonella as a tumorselective protein delivery vector. Oncol. Res., 12, 127-135 (2000)
- D. Deshpande, P. Blezinger, R. Pillai, J. Duguid, B. Freimark and A. Rolland, Target specific optimization of cationic lipid-based systems for pulmonary gene therapy. Pharm. Res., 15, 1340-1347 (1998) https://doi.org/10.1023/A:1011933117509
- F. Liu and L. Huang, Development of non-viral vectors for systemic gene delivery. J. Control Release., 78, 259-266 (2002) https://doi.org/10.1016/S0168-3659(01)00494-1
- Y.K. Song and D.Liu, Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration. Biochim. Biophys. Acta., 1372, 141-150 (1998) https://doi.org/10.1016/S0005-2736(98)00054-6
- J.J. Wheeler, L. Palmer, M. Ossanlou, I. MacLachlan, R.W. Graham, Y.P. Zhang, M.J. Hope, P. Scherrer and P.R. Cullism, Stabilized plasmid-lipid particles: construction and characterization. Gene Ther., 6, 271-281 (1999) https://doi.org/10.1038/sj.gt.3300821
- O. Zelphati, Y. Wang, S. Kitada, J.C. Reed, P.L. FeIgner and J. Corbeil, Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol. Chem., 276, 35103-35110 (2001) https://doi.org/10.1074/jbc.M104920200
- P.L. FeIgner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop. G.M. Ringold and M. Danielsen, Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci., 84, 7413-7417 (1987) https://doi.org/10.1073/pnas.84.21.7413
- H. Kamiya, H. Akita and H. Harashima, Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discov. Today, 8, 990-996 (2003) https://doi.org/10.1016/S1359-6446(03)02889-7
- R.I. Mahato, A. Rolland and E. Tomlinson, Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharm. Res., 14, 853-859 (1997) https://doi.org/10.1023/A:1012187414126
- K.D. Lee, Y.K. Oh, D.A. Portnoy and J.A. Swanson, Delivery of macromolecules into cytosol using liposomes containing hemolysin from Listeria monocytogenes. J Biol. Chem., 271, 7249-7452 (1996) https://doi.org/10.1074/jbc.271.13.7249
- D.S. Friend, D. Papahadjopoulos, R.J. Debs, Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta., 1278, 41-50 (1996) https://doi.org/10.1016/0005-2736(95)00219-7
- X. Zhou and L. Huang. DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim. Biophys. Acta., 1189, 195-203 (1994) https://doi.org/10.1016/0005-2736(94)90066-3
- M.S. Hong, S.J. Lim, Y.K. Oh and C.K. Kim. pH-sensitive, serum-stable and long-circulating liposomes as a new drug delivery system. J. Pharm. Pharmacol., 54, 51-58 (2001) https://doi.org/10.1211/0022357021771913
- A. Kichler, C.Leborgne, E. Coeytaux and O. Danos, Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med., 3, 135-144 (2001) https://doi.org/10.1002/jgm.173
- A.R. Klemm, D. Young and J.B. Lloyd, Effects of polyethyleneimine on endocytosis and lysosome stability. Biochem. Pharmacol., 56, 41-46 (1998) https://doi.org/10.1016/S0006-2952(98)00098-7
- C. Plank, B. Oberhauser, K. Mechtler, C. Koch and E. Wagner, The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 269, 12918-12924 (1994)
- E. Wagner, Application of membrane-active peptides for nonviral gene delivery. Adv. Drug Deliv. Rev., 38, 279-289 (1999) https://doi.org/10.1016/S0169-409X(99)00033-2
- S. Simoes, V. Slepushkin, E. Pretzer, P. Dazin, R. Gaspar, M.C. Pedroso de Lima and N. Duzgunes, Transfection of human macrophages by lipoplexes via the combined use of transferrin and pH-sensitive peptides. J. Leukoc. Biol., 65, 270-279 (1999) https://doi.org/10.1002/jlb.65.2.270
- T.B. Wyman, F. Nicol, O. Zelphati, P.V. Scaria, C. Plank and Jr. F.C. Szoka, Design, 'synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry, 36, 3008-3017 (1997) https://doi.org/10.1021/bi9618474
- D. Lechardeur, K.J. Sohn, M. Haardt, P.B. Joshi, M. Monck, R.W. Graham, B. Beatty, J. Squire, H. O'Brodovich and G.L. Lukacs, Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther., 6, 482-497 (1999) https://doi.org/10.1038/sj.gt.3300867
- D. Lechardeur and G.L. Lukacs, Intracellular barriers to nonviral gene transfer. Curr. Gene Ther., 2, 183-194 (2002) https://doi.org/10.2174/1566523024605609
- W.C. Tseng, F.R. Haselton and T.D. Giorgio, Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophys. Acta., 1445, 53-64 (1999) https://doi.org/10.1016/S0167-4781(99)00039-1
- M.G. Sebestyen, J.J. Ludtke, M.C. Bassik, G. Zhang, V. Budker, E.A. Lukhtanov, J.E. Hagstrom and J.A. Wolff, DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA Nat. Biotechnol., 16, 80-85 (1998) https://doi.org/10.1038/nbt0198-80
- M.A. Zanta, P. Belguise-Valladier and J.P. Behr, Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci., 96, 91-96 (1999) https://doi.org/10.1073/pnas.96.1.91
- A. Subramanian, P. Ranganathan and S.L. Diamond, Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat. Biotechnol., 17, 873-877 (1999) https://doi.org/10.1038/12860
- J.J. Ludtke, G. Zhang, M.G. Sebestyen and J.A. Wolff, A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA. J. Cell Sci., 112, 2033-2041 (1999)
- C.K. Chan and D.A. Jans, Using nuclear targeting signals to enhance non-viral gene transfer. Immunol. Cell Biol., 2, 119-130 (2002)
- T. Nagasaki, T. Myohoji, T. Tachibana, S. Futaki and S. Tamagaki, Can nuclear localization signals enhance nuclear localization of plasmid DNA Bioconjug. Chem., 14, 282-286 (2003)
- R. Kircheis, L. Wightman, A. Schreiber, B. Robitza, V. Rossler, M. Kursa and E. Wagner, Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther., 8, 28-40 (2001) https://doi.org/10.1038/sj.gt.3301351
- N. Shi, W.M. Pardridge, Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci., 97, 7567-7572 (2000) https://doi.org/10.1073/pnas.130187497
- M.A. Monck, A. Mori, D. Lee, P. Tam, J.J. Wheeler, P.R. Cullis and P. Scherrer P, Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J. Drug Target., 7, 439-452 (2000) https://doi.org/10.3109/10611860009102218
- H. Kiwada, H. Matsuo and H. Harashima H, Identification of proteins mediating clearance of liposomes using a liver perfusion system. Adv. Drug Deliv. Rev., 32, 61-79 (1998) https://doi.org/10.1016/S0169-409X(97)00132-4
- N. Shi, Y. Zhang, C. Zhu, R.J. Boado and W.M. Pardridge, Brain-specific expression of an exogenous gene after i.v. administration. Proc. Natl. Acad. Sci., 98, 12754-12759 (2001) https://doi.org/10.1073/pnas.221450098
- S.C. De Smedt, J. Demeester and W.E. Hennink, Cationic polymer based gene delivery systems. Pharm. Res., 17, 113-126 (2000) https://doi.org/10.1023/A:1007548826495
- X. Gao and L. Huang, Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry, 35, 1027-1036 (1996) https://doi.org/10.1021/bi952436a
- M. Ogris, S. Brunner, S. Schuller, R Kircheis and E. Wagner, PEGylated DNA/transferrin-PEl complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther., 6, 595-605 (1999) https://doi.org/10.1038/sj.gt.3300900
- S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont and J.C. Fernandes, Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm., 57, 1-8 (2004) https://doi.org/10.1016/S0939-6411(03)00155-3
- Y.K. Oh, J.P. Kim, H. Yoon, J.M. Kim, J.S. Yang and C.K. Kim, Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther., 8, 1587-1592 (2001) https://doi.org/10.1038/sj.gt.3301516
- S.G. Martin and J.C. Murray, Gene-transfer systems for human endothelial cells. Adv. Drug Deliv. Rev., 41, 223-233 (2000) https://doi.org/10.1016/S0169-409X(99)00068-X
- P.Y. Kuo and W.M. Saltzman, Novel systems for controlled delivery of macromolecules. Crit. Rev. Eukaryot. Gene Expr., 6, 59-73 (1996) https://doi.org/10.1615/CritRevEukarGeneExpr.v6.i1.40
- J. Zabner, A.J. Fasbender, T. Moninger, K.A. Poellinger and M.J. Welsh, Cellular and molecular barriers to gene transfer by a cationic lipid. J. BioI. Chem., 270, 18997-9007 (1995) https://doi.org/10.1074/jbc.270.32.18997
- M.C. Garnett, Gene-delivery systems using cationic polymers. Crit. Rev. Ther. Drug Carrier Syst., 16, 147-207 (1999)
- D.T. Curiel, E. Wagner, M. Cotten, M.L. Birnstiel, S. Agarwal, C.M. Li, S. Loechel and P.C. Hu, High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum. Gene Ther., 3, 147-154 (1997) https://doi.org/10.1089/hum.1992.3.2-147
- A. EI-Aneed, An overview of current delivery systems in cancer gene therapy. J. Control. Release., 94, 1-14 (2004) https://doi.org/10.1016/j.jconrel.2003.09.013
- A.M. Haines, A.S. Irvine, A. Mountain, J. Charlesworth, N.A. Farrow, R.D. Husain, H. Hyde, H. Ketteringham, R.H. McDermott, A.F. Mulcahy, T.L. Mustoe, S.C. Reid, M. Rouquette, J.C. Shaw, D.R. Thatcher, J.H. Welsh, D.E. Williams, W. Zauner and R.O. Phillips, CL22 - a novel cationic peptide for efficient transfection of mammalian cells. Gene Ther., 8, 99-110 (2001) https://doi.org/10.1038/sj.gt.3301314
- N. Ohmori, T. Niidome, T. Kiyota, S. Lee, G. Sugihara, A. Wada, T. Hirayama and H. Aoyagi, Importance of hydrophobic region in amphiphilic structures of alpha-helical peptides for their gene transfer-ability into cells. Biochem. Biophys. Res. Commun., 245, 259-265 (1998) https://doi.org/10.1006/bbrc.1998.8408
- D.L. McKenzie, E. Smiley, K.Y. Kwok and K.G. Rice, Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers. Bioconjug. Chem., 11, 901-909 (2000) https://doi.org/10.1021/bc000056i
- T. Niidome, M. Urakawa, H. Sato, Y. Takahara, T. Anai, T. Hatakayama, A. Wada, T. Hirayama and H. Aoyagi, Gene transfer into hepatoma cells mediated by galactose-modified alpha-helical peptides. Biomaterials, 21, 1811-1819 (2000) https://doi.org/10.1016/S0142-9612(00)00076-4
- T. Niidome, K. Takaji, M. Urakawa, N. Ohmori, A. Wada, T. Hirayama and H. Aoyagi, Chain length of cationic alpha-helical peptide sufficient for gene delivery into cells. Bioconjug. Chem., 10, 773-780 (1999) https://doi.org/10.1021/bc990012d
- H.H. Kim, W.S. Lee, J.M. Yang and S. Shin, Basic peptide system for efficient delivery of foreign genes. Biochim. Biophys. Acta., 1640, 129-36 (2003) https://doi.org/10.1016/S0167-4889(03)00028-4
- C. Plank, M.X. Tang, A.R. Wolfe, Jr. F.C. Szoka, Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Hum. Gene Ther., 10, 319-32 (1999) https://doi.org/10.1089/10430349950019101
- K. Rittner, A. Benavente,A. Bompard-Sorlet, F. Heitz, G. Divita, R. Brasseur and E. Jacobs, New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther., 5, 104-114 (2002) https://doi.org/10.1006/mthe.2002.0523
- P. Yotnda, D.H. Chen, W. Chiu, P.A Piedra, A. Davis, N.S. Templeton and M.K. Brenner, Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses. Mol. Ther., 5, 233-241 (2002) https://doi.org/10.1006/mthe.2002.0545
- J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani and P.L. FeIgner, Direct gene transfer into mouse muscle in vivo. Science, 247, 1465-1468 (1990) https://doi.org/10.1126/science.1690918
- K.A. Choate and P.A. Khavari, Direct cutaneous gene delivery in a human genetic skin disease. Hum. Gene Ther., 8, 1659-1665 (1997) https://doi.org/10.1089/hum.1997.8.14-1659
- J.F Symes, Gene therapy for ischemic heart disease: therapeutic potential. Am. J. Cardiovasc. Drugs, 1, 159-166 (2001) https://doi.org/10.2165/00129784-200101030-00001
- E. Teiger, I. Deprez, V. Fataccioli, S. Champagne, J.L. Dubois-Rande, M. Eloit and S. Adnot, Gene therapy in heart disease. Biomed. Pharmacother., 55, 148-154 (2001) https://doi.org/10.1016/S0753-3322(01)00040-3
- N. Somia and I.M. Verma, Gene therapy: trials and tribulations. Nat. Rev. Genet., 1, 91-99 (2000)
- D. Ferber, Gene therapy. Safer and virus-free. Science, 294, 1638-1642 (2001) https://doi.org/10.1126/science.294.5547.1638