DOI QR코드

DOI QR Code

음이온성 리포솜의 방출 거동과 안정성

Release Profile and Stability of Anionic Liposomes

  • 남다은 (충북대학교 화학공학과) ;
  • 한희동 (한국화학연구원 나노생체재료연구원) ;
  • 박윤정 (한국화학연구원 나노생체재료연구원) ;
  • 김윤아 (한국화학연구원 나노생체재료연구원) ;
  • 신병철 (한국화학연구원 나노생체재료연구원)
  • Nam, Da-Eun (Department of Chemical Engineering, Chungbuk National University) ;
  • Han, Hee-Dong (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology) ;
  • Park, Yun-Jung (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology) ;
  • Kim, Yun-A (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology) ;
  • Shin, Byung-Cheol (Nanobiomaterials Lab. Korea Research Institute of Chemical Technology)
  • 발행 : 2004.08.20

초록

This study was to prepare the anionic liposomes which were to release anticancer drug (doxorubicin) at the hyperthermia temperature $({\sim}42^{\circ}C)$ and to stabilize in bovine serum solution at $37^{\circ}C$. The vesicle size and zeta potential of liposomes in Tris-HCl buffered solution (pH 7.4) were measured by an electrophoretic light scattering spectrophotometer. To estimate the stability of liposomes, liposome size was measured in bovine serum solution at $37^{\circ}C$ for 72 h. The release of doxorubicin from liposome was determined by measuring the fluorescence intensity using fluorescence spectrophotometry with temperature and time. The size of liposomes was from 120 to 160 nm and zeta potential was from $-33.3{\pm}2.4$ to $-75.6{\pm}6.9\;mV$. Anionic liposome was stabilized in bovine serum solution at $37^{\circ}C$ within 72 h. Additionally, the release transition temperature of doxorubicin from liposomes was increased by increasing mole % of anionic phospholipid.

키워드

참고문헌

  1. A. Sharma and U.S. Sharma, Liposomes in drug delivery: progress and limitations, Int. J. Pharm., 154, 123-140 (1997) https://doi.org/10.1016/S0378-5173(97)00135-X
  2. Y. Barenholz, Document title liposome application: problems and prospects, Current Opinion in Colloid & Interface Sci.,6, 66-77 (2001)
  3. Lian, H. Tianshun and J.Y. Rodney, Trends and developments in liposome drug delivery systems, J. Pharm. Sci., 90, 667-680 (2001) https://doi.org/10.1002/jps.1023
  4. K. Maruyama, S. Unezaki, N. Takahashi and M. Iwatsuru, Enhanced delivery of doxorubicin to tumor by longcirculating thermosensitive liposomes and local hyperthermia, Bioch. Biophy. Acta, 1149, 209-216 (1993) https://doi.org/10.1016/0005-2736(93)90203-C
  5. G.R. Anyarambhatla and D. Needham, Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: A new temperature-sensitive liposome for use with mild hyperthermia, J Liposome Res., 9, 491-506 (1999) https://doi.org/10.3109/08982109909035549
  6. O. Ishida, K. Maruyama, H. Yanagie, M. Eriguchi and M. Iwatsuru, Targeting chemotherapy to solid tumors with long-circulating thermosensitive liposomes and local hyperthermia, Japan. Can. Assoc., 91, 118-126 (2000)
  7. A.S.L. Derycke and P.A.M. de Witte, Liposomes for photodynamic therapy, Adv. Drug Deliv. Rev., 56, 17-30 (2004) https://doi.org/10.1016/j.addr.2003.07.014
  8. S. Simoes, J.N. Moreira, C. Fonseca, N. Duzgunes and M.C. Pedroso de Lima, On the formulation of pH-sensitive liposomes with long circulation times, Adv. Drug Deliv. Rev., 56, 947-965 (2004) https://doi.org/10.1016/j.addr.2003.10.038
  9. M.H. Gaber, N.Z. Wu, K Hong, KH. Shi, M.W Dewhirst, and D. Papahadjopoulos, Thermosensitive lipPsoJlles: extravasation and release of contents in tumor microvascular networks, Int. J. Radia. Oncology, Biology, Physics, 36, 1177-1187 (1996) https://doi.org/10.1016/S0360-3016(96)00389-6
  10. G. Kong, G. Anyarambhatla, WP. Petros, R.D. Braun, O.M. Colvin, D. Needham and M.W Dewhirst, Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release, Cancer Res., 60, 6950-6957 (2000)
  11. A Hillery, Heat-sensitive liposomes for tumour targeting, Drug Discov. Today, 6, 224-225 (2001) https://doi.org/10.1016/S1359-6446(01)01695-6
  12. A Ono, K Takeuchi, A Sukenari, T. Suzuki, I. Adachi anq M. Ueno, Reconsideration of drug release from temperature-sensitive liposomes, Bio. Phann. Bull., 25, 97-133 (2002) https://doi.org/10.1248/bpb.25.97
  13. W Lin, M.C. Garnett, M.C. Davies, F. Bignotti, P. Ferruti, S.S. Davis and L. Illum, Preparation of surface-modified albumin nanospheres, Biomaterials, 18, 559-565 (1997) https://doi.org/10.1016/S0142-9612(96)00176-7
  14. S.A Johnstone, D. Masin, L. Mayer and M.B. Bally, Surface-associated serum proteins inhibit the uptake of phosphati-dylserine and poly(ethylene glycol) liposomes by mouse macrophages, Bioch. Biophy. Acta, 1513, 25-37 (2001) https://doi.org/10.1016/S0005-2736(01)00292-9
  15. M.C. Woodle, Controlling liposome blood clearance by surfacegrafted polymers, Adv. Drug Deliv. Rev., 32, 139-152 (1998) https://doi.org/10.1016/S0169-409X(97)00136-1
  16. P. Vermette and L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms, Colloids and Surfaces, 28, 153-198 (2003)
  17. J.L. Rigaud, M.T. Patemostre and A Bluzat, Mechanisms of membrane protein insertion into liposomes during reconstitu-tion procedures involving the use of detergents. 2. Incor-poration of the light-driven proton pump bacteriorhodopsin, Bipcherrtistry, 27. 2677-2688 (1988)
  18. D.C. Johathan and M.G.T. Kevin, Fatt6rs Mfecting the size distribution of liposomes produced by freeze-thaw extrusion, Int. J. Pharm., 188, 87-95 (1999) https://doi.org/10.1016/S0378-5173(99)00207-0
  19. K. Kono, R. Nakai, K. Morimoto and T. Takagishi, Thermosensitive polymer-modified liposomes that release contents around physiological temperature, Bioch. Biophy. Acta, 1416, 239-250 (1999) https://doi.org/10.1016/S0005-2736(98)00226-0
  20. J.C. Kim, S.K. Bae and J.D. Kim, Temperature-sensitivity of liposomal lipid bilayers mixed with poly (n-isopropyla-crylamide-co-acrylic acid), J. Biochem., 121, 15-19 (1997) https://doi.org/10.1093/oxfordjournals.jbchem.a021558
  21. G. Gregoriadis, Liposome technology 2nd edition: Liposome preparation and related techniques, vol. I, CRS press, london, England, pp. 123-139 (1993)
  22. D.C. Litzinger, A.M.J. Buiting, N. van Rooijen and L. Huang, Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes, Bioch. Biophy. Acta, 1190, 99-107 (1994) https://doi.org/10.1016/0005-2736(94)90038-8
  23. H.S. Jeon, SK Lee and Y.WJ. Choi, Physical characteristics of sterically stabilized liposomes after lyophilization and rehydration, Kor. Phann. Sci., 31, 4-473 (2001)
  24. P. Walde and S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biom. Eng., 18, 143-177 (2001) https://doi.org/10.1016/S1389-0344(01)00088-0