Effect of Myricetin Combined with Vitamin C or Vitamin E on Antioxidant Enzyme System in Murine Melanoma Cells

B16F10 세포에서 Flavonoid인 Myricetin과 Vitamine C, Vitamine E의 병용 투여가 항산화 효소계에 미치는 영향

  • Yu, Ji-Sun (College of Pharmacy, Sookmyung Women‘s University) ;
  • Kim, An-Keun (College of Pharmacy, Sookmyung Women‘s University)
  • 유지선 (숙명여자대학교 약학대학) ;
  • 김안근 (숙명여자대학교 약학대학)
  • Published : 2004.12.30

Abstract

Flavonoids are class of polyphenolic compounds widely distributed in the plant kingdom, which display a variety of biological activities, including antiviral, antithrombotic, antiiflammatory, antihistaminic, antioxidant and free-radical scavenging abilities. To determined flavonoid, myricetin in the presence of other antioxidants - vitamin C and vitamin E - can exert antioxidative properties not only directly by modulating the AOE system but also scavenging free radical, we investigated cell viability, antioxidant enzyme activities and ROS level in B16F10 murine melanoma cell. B16F10 cells were exposed to medium containing myricetin in the presence or absence of vitamin C or vitamin E for a period of 24 hr. Cell viability was measured by MTT assay. In co-treating myricetin with other antioxidants, CAT activities were increased, compared with control, but SOD and GPx activities were decreased, compared with each antioxidant treated groups . In the group of myricetin or myricetin present with other antioxidants, ROS levels were decreased dose-dependently. Especially, myricetin present of other antioxidants were decreased compared with myricetin.

Keywords

References

  1. Borish E. T, Prior W. A., Venuugopal S., et al. (1987) DNA synthesis is blocked by cigarette tar-induced DNA singlestrand breaks. Carcinogenesis. 8: 1517-1520 https://doi.org/10.1093/carcin/8.10.1517
  2. Machlin L. J. and Bendich A. (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1: 441-445
  3. Mat$\`{e}$s J. M., Perez-Gomez C., N$\`{u}\~{n}$ez de Castro I. (1999) Antioxidant enzymes and human disease. Clin. Biochem. 32: 595-603 https://doi.org/10.1016/S0009-9120(99)00075-2
  4. McCord J. M. (1979) Superoxide, superoxide dismutase and oxygen toxicity. In: Hodgson E. Bend J. R. Philpot R. M., eds. Reviews in Biochemical Toxicology. 1: 109-124
  5. Aebi Hugo (1984) Catalase in vitro. Method in Enzymology. 105: 93-127 https://doi.org/10.1016/S0076-6879(84)05013-8
  6. Paglia D. E. and Valentine W. N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab. Clin. Med. 70: 158-169
  7. Middleton E. (1996) Biological properties of plant flavonoids: an overview. Int J Pharmacognosy. 34: 344-348 https://doi.org/10.1076/phbi.34.5.344.13245
  8. Formica J. V. and Regelson V. (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol 33: 1061-1080 https://doi.org/10.1016/0278-6915(95)00077-1
  9. Inal M. E. and Kahraman A. (2000) The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology. 154: 21-29 https://doi.org/10.1016/S0300-483X(00)00268-7
  10. Ina1 M. E., Kahraman A. and Koken T. (2001) Bebeficial effects of quercetin on oxidative stress induced by ultraviolet. A. Clin. Exp. Dermatol 26(6): 536-539 https://doi.org/10.1046/j.1365-2230.2001.00884.x
  11. Robak J. and Gryglewski R. J. (1996) Bioactivity of flavonoid. Pol. J. Pharmacol. Pharm. 48: 558-564
  12. Husain S. R., Cillar.d J. and Cillard P. (1987) Hydroxyl radical scavenging activity of flavonoids. Phytochenistry. 26: 2489-2491 https://doi.org/10.1016/S0031-9422(00)83860-1
  13. Bors W., Heller W., Michel C. and Saran M. (1990) flavonoid as antioxidants : determination of radical-scavenging efficiencies. Methods Enzymol. 186: 143-155
  14. Robak J. and Gryglewski R. J. (1988) Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837-841 https://doi.org/10.1016/0006-2952(88)90169-4
  15. Vistica D. T, Skehan P., Scudiero D., Monks A., Pittman A. and Boyd M. R. (1991) Tetrasodiurn-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 51: 2515-20
  16. Smith P. K., Krohn R. I., Hermanson G. T, Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J. and Klenk D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem. 150: 76-85 https://doi.org/10.1016/0003-2697(85)90442-7
  17. Martin J. P., Dailey M. and Sugarman E. (1987) Negative and Positive ass superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 255(2): 329-336 https://doi.org/10.1016/0003-9861(87)90400-0
  18. Flohe Leopold and Wolfgang A Gunzler (1984) Assays of glutathione peroxidase. Methods in Enzymology. 105: 93 https://doi.org/10.1016/S0076-6879(84)05013-8
  19. Sattler M., Winkler T., Verma S., Byrne C. H., Shrikhande G., Salgia R. and Griffin J. D. (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 93: 2928-2935