Biotransformation of Ginseng Extract to Cytotoxic Compound K and Ginsenoside $Rh_2$ by Human Intestinal Bacteria

  • Published : 2004.12.30

Abstract

When saponin extracts of dried ginseng and red ginseng were anaerobically incubated with human intestinal microflora, these extracts were metabolized to compound K and ginsenoside $Rh_2$, respectively. However, when these extracts were incubated with commercial lactic acid bacteria, these did not metabolize these ginsenosides to compound K or ginsenoside $Rh_2$. Among some intestinal bacteria isolated from human feces, Bacteroides C-35 and C-36 transformed these saponin extracts to compound K and ginsenoside $Rh_2$, respectively. These bacteria also transformed water extracts of dried ginseng and red ginseng to compound K and ginsenoside $Rh_2$, respectively, similarly with that of the saponin extracts. Among transformed ginsenosides, compound K and 20(S)-ginsenoside $Rh_2$ exhibited the most potent cyotoxicity against tumor cells.

Keywords

References

  1. Akao, T., Kanaoka, M., Kobashi, K, Appearance of compound K, a major metbolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral aministrationmeasruement of compound K by enzyme immunoassay. Biol. Pharm. Bull., 21, 245-249 (1998a) https://doi.org/10.1248/bpb.21.245
  2. Akao, T., Kida, H., Kanaoka, M., Hattori, M., Kobashi, K, Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside RbI from Panax ginseng. J. Pharm. Pharmacal., 50, 1155-1160 (1998b) https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  3. Bae, E.A, Park, S.Y., Kim, D.H., Constitutive $\beta$-glucosidases hydrolyzing ginsenoside RbI and Rb2 from human intestinal bacteria. Biol. Pharm. Bull., 23, 1481-1485 (2000) https://doi.org/10.1248/bpb.23.1481
  4. Bae, E.A, Han, M.J., Choo, M.K., Park, S.Y., Kim, D.H., Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Bioi. Pharm. Bull., 25, 58-63 (2002) https://doi.org/10.1248/bpb.25.58
  5. Carmichael, J., DeGreff, W.G., Gazdar, A.F., Minna, J.D., Mitchell, J.B., Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chmosensitivity testing. Cancer Res., 47,936-940 (1987)
  6. Han, B.H., Park, M.H., Han, Y.N., Woo, L.K, Sankawa, D., Yahara, S., Tanaka, O., Degradation of ginseng saponins under mild acidic conditions. Planta Med., 44, 146-149 (1982) https://doi.org/10.1055/s-2007-971425
  7. Han, B.H., Park, M.H., Han, Y.N., Woo, L.K., Sankawa, D., Yahara, S., Tanaka, O., Degradation of ginseng saponins under mild acidic conditions. Planta Med., 44, 146-149 (1982) https://doi.org/10.1055/s-2007-971425
  8. Hasegawa, H., Sung, J.H., Benno, Y., Role of human intestinal Prevotella oris in hydrolyzing Ginseng saponis. Planta Med., 63,436-440 (1997) https://doi.org/10.1055/s-2006-957729
  9. Holdeman LV, Kelley RW, and Moore WEC Genus Bacteroides, In Krieg N.R., and lG. Holt (ed.) Bergeys manual of systemic bacteriology. Williams and Wilkins, Baltimore, pp 602-631 (1984)
  10. Kanaoka, M, Kato, H, Shimada, F., Yano, S., Studies on the enzyme immunoassay of bioactive constituents contained in oriental medicinal drugs. VI. Enzyme immunoassay of ginesenoside RbI form Panax ginseng. Chem. Pharol. Bull., 40,314-317 (1992) https://doi.org/10.1248/cpb.40.314
  11. Kanaoka, M., Akao, T., Kobashi, K, Metabolism of ginseng saponins, ginsenosides, by human intestinal bacteria. J. Tradit. Med., 11, 241-245 (1994)
  12. Karikura M., Miyaze T., Tanizawa H., Taniyzma T., Takino Y., Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside Rb1 and Rb2 in the digestive tract of rats. Chem. Pharm. Bull., 39, 2357-2361 (1991) https://doi.org/10.1248/cpb.39.2357
  13. Kitagawa, I., Yoshikawa, M., Yoshihara, M., Hayashi, T., Taniyama, T., Chemical studies on crude drug precession. I. On the constituents of ginseng radix rubura (I). Yakugaku Zasshi, 103,612-622 (1983) https://doi.org/10.1248/yakushi1947.103.6_612
  14. Lee S.J, Sung J.H., Lee S.J., Moon C.K, Lee B.H., Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett., 144,39-43 (1999). https://doi.org/10.1016/S0304-3835(99)00188-3
  15. Mochizuki et al. Mochizuki M, Yoo CY, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20(R)- and 20(S)-ginsenoside Rg3, of Red ginseng. Biol. Pharm. Bull., 18, 1197-1202 (1995) https://doi.org/10.1248/bpb.18.1197
  16. Sato K, Mochizuki M., Saiki I., Yoo Y.C, Samukawa K, Azuma I., Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng-ginsenoside Rb2.Biol. Pharm. Bull., 17,635-639 (1994) https://doi.org/10.1248/bpb.17.635
  17. Shibata, S., Fujita, M., Itokawa, H., Tanaka, O., Ishii, T., Panaxadiol, a sapongenin of ginseng roots (1). Chern. Pharm. Bull., 11, 759-764 (1963) https://doi.org/10.1248/cpb.11.759
  18. Tanaka N., Tanaka O., Shibata S., Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng; Stereochemistry of sapogenin of ginsenoside Rb 1, Rb2 and Rc. Chem. Pharm. Bull., 20, 1212-1216 (1972) https://doi.org/10.1248/cpb.20.1212
  19. Wakabayashi C., Hasegawa H., Murata J., Saiki I., In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res., 9, 411-417 (1998)
  20. Wu J.Y., Gardner B.H., Murphy Cr., Seals J.R., Kensil CR., Recchia l, Beltz G.A, Newman G.W., Newman M.J., Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-l vaccine. J. Immunol., 148, 1519-1525 (1992)