Protection of NMDA-Induced Neuronal Cell Damage by Methanol Extract of Myristica Fragrans Seeds in Cultured Rat Cerebellar Granule Cells

  • Ban, Ju-Yeon (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Cho, Soon-Ock (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Ji-Ye (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Bang, Kyong-Hwan (National Institute of Crop Science, RDA) ;
  • Seong, Nak-Sul (National Institute of Crop Science, RDA) ;
  • Song, Kyung-Sik (College of Agriculture and Life-Sciences, Kyungpook National University) ;
  • Bae, Ki-Whan (College of Pharmacy, Chungnam National University) ;
  • Seong, Yeon-Hee (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • Published : 2004.12.30

Abstract

Myristica fragrans seed from Myristica fragrans Houtt (Myristicaceae) has various pharmacological activities peripherally and centrally. The present study aims to investigate the effect of the methanol extract of Myristica fragrans seed (MF) on N-methyl-D-aspartate (NMDA)-induced neurotoxicity in primary cultured rat cerebellar granule neuron. MF, over a concentration range of 0.05 to $5\;{\mu}g/ml$, inhibited NMDA (1 mM)- induced neuronal cell death, which was measured by trypan blue exclusion test and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. MF $(0.5\;{\mu}g/ml)$ inhibited glutamate release into medium induced by NMDA (1 mM), which was measured by HPLC. Pretreatrnent of MF $(0.5\;{\mu}g/ml)$ inhibited NMDA (1 mM)-induced elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). These results suggest that MF prevents NMDA-induced neuronal cell damage in vitro.

Keywords

References

  1. Baltrons, M.A., Saadoun, S., Agullo, L. and Garcia, A., Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture. J. Neurosci. Res., 49, 333-341 (1997) https://doi.org/10.1002/(SICI)1097-4547(19970801)49:3<333::AID-JNR8>3.0.CO;2-D
  2. Bardoul, M., Drian, M.J. and Konig, N., Modulation of intracellular calcium in early neural cells by non-NMDA ionotropic glutamate receptors. Perspect. Dev. Neurobiol., 5, 353-371 (1998)
  3. Bashkatova, V., Narkevich, V., Vitskova, G. and Vanin, A., The influence of anticonvulsant and antioxidant drugs on nitric oxide level and lipid peroxidation in the rat brain during penthylenetetrazole-induced epileptic form model seizures. Prog. Neuro-Psychopharmacol. BioI. Psychiatry, 27, 487-492 (2003)
  4. Berridge, M.V. and Tan, A.S., Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 303, 474-482 (1993) https://doi.org/10.1006/abbi.1993.1311
  5. Bondy, S.C. and Lee, D.K., Oxidative stress induced by glutamate receptor agonists. Brain Res., 610, 229-233 (1993) https://doi.org/10.1016/0006-8993(93)91405-H
  6. Brenner, N., Frank, O.S. and Knight, E., Chronic nutmeg psychosis. J.R. Soc. Med., 86,179-180 (1993)
  7. Chavko, M., Braisted, J.C. and Harabin, A.L., Effect of MK801 on seizures induced by exposure to hyperbaric oxygen: comparison with AP-7. Toxicol. Appl. Pharmacol., 151, 222-228 (1998) https://doi.org/10.1006/taap.1998.8447
  8. Choi, D.W., Excitotoxic cell death. J. Neurobiol., 23, 1261-1276 (1992). https://doi.org/10.1002/neu.480230915
  9. Choi, D.W., Glutamate neurotoxicity and disease of nervous system. Neuron 1, 623-634 (1988) https://doi.org/10.1016/0896-6273(88)90162-6
  10. Choi, D.W., Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett., 58, 293-297 (1985) https://doi.org/10.1016/0304-3940(85)90069-2
  11. Chopra, R.N., Nayar, S.L. and Chopra, I.C., Glossary of Indian Medicinal Plants. CSIR, New Delhi, p. 261. (1956)
  12. Drian, MJ., Kamenka, J.M. and Privat, A, In vitro neuroprotection against glutamate toxicity provided by novel non-competitive Nmethyl- D-aspartate antagonists. J. Neurosci. Res., 57, 927-934 (1999) https://doi.org/10.1002/(SICI)1097-4547(19990915)57:6<927::AID-JNR18>3.0.CO;2-C
  13. Duffy, S. and MacViar, B.A, In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci., 16, 71-81 (1996)
  14. Dykens, J.A., Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $Ca^{2+}$ and $Na^+$ implications for neurodegeneration. J. Neurochem., 63, 584-591 (1994) https://doi.org/10.1046/j.1471-4159.1994.63020584.x
  15. Ellison, D.W., Beal, M.F. and Martin, J.B., Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electro-chemical detection. J. Neurosci., 19, 305-315 (1987)
  16. Evans, W.C., Treese and Ev,ms'Pharmcognosy. $14^{th}$ ed. Singapore: Harcourt Brace & Co. Asia, p. 273-275. (1996)
  17. Giusti, P, Franceschini, D., Petrone, D., Manev, H. and Floreani, M., In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J. Pineal Res., 20, 226-231 (1996) https://doi.org/10.1111/j.1600-079X.1996.tb00263.x
  18. Gunasekar, P.G., Sun, Pw., Kanthasamy, A.G., Borowitz, J.L., and Isom, G.E., Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-MethylD- aspartate receptor activation. J. Phannacol. Exp. Ther., 277, 150-155, (1996)
  19. Huang, K.C., The pharmacology of Chinese herbs, CRC press LLC, p. 155, (1999)
  20. Jensen, J.B., Schousboe, A. and Pickering, D.S., AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization. Neurochem. Int., 32, 505-513 (1998) https://doi.org/10.1016/S0197-0186(97)00130-7
  21. Koh, S.B., Ban, J.Y., Lee, B.Y. and Seong, Y.H., Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells. Planta Med., 69, 506-512 (2003) https://doi.org/10.1055/s-2003-40647
  22. Larm, J.A., Beart, P.M. and Cheung, N.S., Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurons. Neurochem. Int., 31, 677-682 (1997) https://doi.org/10.1016/S0197-0186(97)00030-2
  23. Lesort, M., Esclaire, F., Yardin, C. and Hugon, J., NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci. Lett., 221,213-216 (1997) https://doi.org/10.1016/S0304-3940(96)13310-3
  24. McNamara, J.O., Russell, R.D., Rigsbee, L. and Bonhaus, D.W., Anticonvulsant and antiepileptogenic actions of MK-801 in the kindling and electroshock models. Neurophannacol. 27, 563568 (1988)
  25. Mei, J.M., Chi, W.M., Trump, B.F. and Eccles, C.U., Involvement of nitric oxide in the deregulation of cytosolic calcium in cerebellar neurons during combined glucose-oxygen deprivation. Mol. Chem. Neuropathol., 27,155-166 (1996) https://doi.org/10.1007/BF02815091
  26. Meldrum, B.S., Excitatory amino acids in epilepsy and potential novel therapies. Epilepsy Res., 12, 189-196 (1992) https://doi.org/10.1016/0920-1211(92)90040-Z
  27. Merck Index $11^{th}$ Edition; 999-1000 (1989)
  28. Mody, I. and MacDonald, J.F., NMDA receptor-dependent excitotoxicity: the role of intracellular $Ca^{2+}$ release. Trends Pharmacol. Sci., 16, 356-360 (1995) https://doi.org/10.1016/S0165-6147(00)89070-7
  29. Mulsch, A., Busse, R, Mordvintcev, P, Vanin, A., Nielsen, E., Scheel-Kruger, J. and Olesen, S.P, Nitric oxide promotes seizure activity in kainite-treated rats. NeuroReport, 5, 23252328 (1994)
  30. Nadkami, K.M., Indian Materia Medica vol. 1. Popular Prakashan. Bombay p. 830-834. (1976)
  31. Nicholls, D.G. and Budd, S.L., Mitochondria and neuronal survival. Physiol. Rev., 80, 315-360 (2000) https://doi.org/10.1152/physrev.2000.80.1.315
  32. Pereira, C.F. and Oliveira, C.R, Oxidative glutamate toxicity involvesmitochondrial dysfunction and perturbation of intracellular $Ca^{2+}$ homeostasis. Neurosci. Res., 37, 227-236 (2000) https://doi.org/10.1016/S0168-0102(00)00124-3
  33. Ram, A., Lauria, P, Gupta, R and Sharma, V.N., Hypolipidaemic effect of Myristica fragrans fruit extract in rabbits. J. Eth nopharmacol., 55, 49-53 (1996)
  34. Regan, RF. and Choi, D.W, The effect of NMDA, AMPA/ kainate, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res., 633, 236-242 (1994) https://doi.org/10.1016/0006-8993(94)91544-X
  35. Rothman, S.M. and Olney, J.W, Glutamate and the phathophy siology of hypoxic-ischemic brain damage. Ann. Neurol., 19, 105-111 (1986) https://doi.org/10.1002/ana.410190202
  36. Solum, D., Hughes, D., Major, M.S. and Parks, T.N., Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPNkainate receptors. J. Neumsci., 17,4744-4751 (1997)
  37. Sonavane, G.S., Sarveiya, V.P, Kasture, V.S. and Kasture, S.B., Anxiogenic activity of Myristica fragrans seeds. Pharmacol. Biochem. Behav., 71, 247-252 (2002)
  38. Tecoma, E.S., Monyer, H., Goldberg, M.P and Choi, D.W., Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2, 1541-1545 (1989) https://doi.org/10.1016/0896-6273(89)90042-1
  39. Van Gils, C. and Cox, P.A., Ethnobotany of nutmeg in the spice islands. J Ethnopharmacol., 42, 117-124 (1994) https://doi.org/10.1016/0378-8741(94)90105-8
  40. Van Vliet, BJ., Sebben, M., Dumuis, A., Gabrion, J, Bockaert, J. and Pin, J.P, Endogenous amino acid release from cultured cerebellar neuronal cells: Effect of tetanus toxin on glutamate release. J. Neurochem., 52,1229-1230 (1989) https://doi.org/10.1111/j.1471-4159.1989.tb01870.x
  41. Weiss, J.H., Hartley, D.M., Koh, J. and Choi, D.W, The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247, 1474-1477 (1990) https://doi.org/10.1126/science.2157282
  42. Whit, R.J. and Reynolds, I.J., Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxic exposure. J. Neurosci., 16, 5688-5697 (1996)
  43. Wong, E.H., Kemp, J.A, Priestley, T., Knight, A.R., Woodruff, G. N. and Iversen, L.L., The anticonvulsants MK-801 is a potent N-methyl-D-aspartate antagonist, Pmc. Natl. Acad. Sci. U. S. A., 83, 7104-7108 (1986) https://doi.org/10.1073/pnas.83.18.7104