Action of Asparagus racemosus Against Streptozotocin-Induced Oxidative Stress

  • Govindarajan, Raghavan (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute) ;
  • Vijayakumar, Madhavan (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute) ;
  • Rao, Chandana Venkateshwara (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute) ;
  • Kumar, Vivek (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute) ;
  • Rawat, Ajay Kumar Singh (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute) ;
  • Pushpangadan, Palpu (Pharmacognosy & Ethnopharmacology Division, National Botanical Research Institute)
  • Published : 2004.08.31

Abstract

Antidiabetic treatment with tubers of Asparagus racemosus (Liliaceae) extract (l00 and 250 mg/kg body weight) for three weeks showed significant reduction in thiobarbituric acid reactive substances (TBARS) and glutathione reductase (GSH-R) in both liver and kidney. The treatment with A. racemosus significantly altered the glutathione (GSH) and GSH-R to be comparable with the control group. A. racemosus and glibenclamide treated rats showed decreased lipid peroxidation that is associated with increased activity of superoxide dismutase (SOD) and Catalase (CAT). The ability of A. racemosus on tissue lipid per oxidation and antioxidant status in diabetic animals has not been studied before. The result of this study thus shows that though, A. racemosus possesses moderate antidiabetic activity, but it exhibits potent antioxidant potential in diabetic conditions.

Keywords

References

  1. Aebi, H., Catalase, in Bergmyer, H.U. (ed.), Methods in enzymatic analysis, Academic press, New York, 1983, pp. 276-286
  2. Agarwal, S.S. and Singh, V.K., Immunomodulators: A review of studies on Indian medicinal plants and synthetic peptides PINSA. B65, 179-184 (1999)
  3. Baynes, J.W., Perspectives in diabetes, role of oxidative stress on development of complications in diabetes. Diabetes 40, 405-412 (1991) https://doi.org/10.2337/diabetes.40.4.405
  4. Beutler, E., Duron, O., and Kelly, B.M., Improved method for determination of blood glutathione. J. Lab. Ctin. Med. 61, 882-888 (1967)
  5. Garg, M.C., Ojha, S., and Bansal, D.D., Antioxidant status of streptozotocin in diabetes rats. Indian J. Exp. Biol. 34, 264-266 (1996)
  6. Govindarajan, R., Rastogi, S., Vijayakumar, M., Rawat A.K.S., Shirwaikar, A., Mehrotra S., and Pushpangadan, R, Studies on the antioxidant activities of Desmodium gangeticum. Biot. Pharm. Butt. 26, 1424-1427 (2003) https://doi.org/10.1248/bpb.26.1424
  7. Grankvist, K., Marklund, S., and Taljedal, I.B., Superoxide dismutase is prophylactic against alloxan diabetes. Nature 294, 158-161 (1981) https://doi.org/10.1038/294158a0
  8. Heikkila, R.G., Winston, B., Cohen, G., and Barden, H., Alloxan induced diabetes: evidence of hydroxyl radical as a cytotoxic intermediate. Biochem. Pharmacol. 25, 1085-1092 (1976) https://doi.org/10.1016/0006-2952(76)90502-5
  9. Hom, H.D., Glutathione reductase, m Bergmyer, H.U. (ed.) Methods in enzymatic analysis, Academic press, New York, 1963, pp. 875-879
  10. Jain, S.K., Dicdonary of Indian Folk Medicine and Ethnobotany. Deep Publications, New Delhi, 1991, pp. 29
  11. Kamat, J.R, Boloor, K.K., Devasagayam, T.R, and Venkatachalam, S.R., Antioxidant properties of Asparagus racemosus against damage induced by gamma-radiation in rat liver mitochondria. J. Ethnopharmacol. 71, 425-435 (2001) https://doi.org/10.1016/S0378-8741(00)00176-8
  12. Karpen, C.W., Pritchard, K.A., Merola A.J., and Ranganamala, R.V., Alterations of the prostaglandin-thromboxin ratio in streptozotocin induced diabetes rats. Prostagland. Leukotrien. Med.. 8, 93-103 (1982) https://doi.org/10.1016/S0262-1746(82)80001-2
  13. Marklund, S. and Marklund, G., Involvement of superoxide anion radical and a convenient assay of superoxide dismutase. Eur. J. Biochem. 47, 469-474 (1974)
  14. Mukherjee, B., Mukherjee, J.H., and Chatterjee, M., Lipid peroxidation, glutathione levels and change in glutathionerelated enzymes activities in streptozotocin-induced diabetic rats. Immunol. Cell. Biol. 72, 109-111(1994)
  15. Nadkami, A.K., Nadkarni's Indian materia medica, vol. 1. Popular Prakashan, Bombay, 1976, pp. 153
  16. Nakakimura, H., and Mizuno, K., Studies on lipid peroxidation in biological system II. Hyperlipoperoxidemia in mice induced by alloxan. Chem. Pharm. Bull. 28, 2207-2211 (1980)
  17. Okhawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-355 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  18. Rauscher, F.M., Sanders, R.A., and Watkins, J.B., Effects of new antioxidant compounds PNU-104067F and PNU-74389G on antioxidant defense in normal and diabetic rats. J. Biochern. Mol. Toxicol 14, 189-194 (2000) https://doi.org/10.1002/(SICI)1099-0461(2000)14:4<189::AID-JBT2>3.0.CO;2-V
  19. Santhakumari, R, Prakasam, A., and Pugalendi, K.V, Modulation of oxidative stress parmeters by treatment with Piper betel leaf in streptozotocin induced diabetic rats. Indian J. Pharmacol. 35, 373-378 (2003)
  20. Sasaki, T., Matzy, S., and Sonal, A., Effect of acetic acid concentration on the colour reaction in the O-toluidine boric acid method for blood glucose estimation. Rinsho. Kagaku. 1, 346-353 (1972)
  21. Saxena, V.K., and Chourasia, S., A new isoflavone from the roots of Asparagus racemosus. Fitoterpia 72, 307-309 (2001) https://doi.org/10.1016/S0367-326X(00)00315-4
  22. Sekine, T., Fukaswa, N., Kashiwagi, Y, Murakoshi, I., and Ruangrungsi, N., Structure of asparagamine A, a novel polycyclic alkaloid from Asparagus racemosus. Chem. Pharm. Bull. 42, 1360-1362 (1994) https://doi.org/10.1248/cpb.42.1360