Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo (Department of Physiology, School of Medicine, Kyungpook National University)
  • Published : 2004.08.21

Abstract

Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

Keywords

References

  1. Anderson CN, Tolkovsky AM. A role for MAPK. ERK in sympathetic neuron survival: protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J Neurosci 19:664-673, 1999
  2. Asanuma T, Inanami O, Tabu K, Waki K, Kon Y, Kuwabara M. Protection against malonate-induced ischemic brain injury in rat by a cell-permeable peptidic c-Jun N-terminal kinase inhibitor, (L)-HIV-TAT48-57-PP-JBD20, observed by the apparent diffusion coefficient mapping magnetic resonance imaging method. Neurosci Lett 359:57-60, 2004 https://doi.org/10.1016/j.neulet.2004.02.009
  3. Barancik M, Htun P, Strohm C, Kilian S, Schaper W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischaemic death. Cardiovasc Pharmacol 35:474-483, 2000 https://doi.org/10.1097/00005344-200003000-00019
  4. Barone FC, Irving EA, Ray AM. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 21:129-145, 2001 https://doi.org/10.1002/1098-1128(200103)21:2<129::AID-MED1003>3.0.CO;2-H
  5. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K. Treatment of comatose survivors of outof hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557-563, 2002 https://doi.org/10.1056/NEJMoa003289
  6. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9:1180-1186, 2003 https://doi.org/10.1038/nm911
  7. Clanachan AS, Jaswal JS, Gandhi M, Bottorff DA, Coughlin J, Finegan BA, Stone JC. Effects of inhibition of myocardial extracellular- responsive kinase and P38 mitogen-activated protein kinase on mechanical function of rat hearts after prolonged hypothermic ischemia. Transplantation 75:173-180, 2003 https://doi.org/10.1097/01.TP.0000040429.40245.3A
  8. Clark RS, Kochanek PM, Marion DW, Schiding JK, White M, Palmer AM, DeKosky ST. Mild posttraumatic hypothermia reduces mortality after severe controlled cortical impact in rats. J Cereb Blood Flow Metab 16:253-261, 1996
  9. Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia a critical appraisal with implications for clinical treatment. Mol Neurobiol 14:171-201, 1997 https://doi.org/10.1007/BF02740655
  10. D'Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab 22:843-851, 82002
  11. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95-112, 2000 https://doi.org/10.1111/j.1750-3639.2000.tb00247.x
  12. Deng H, Han HS, Cheng D, Sun GH, Yenari MA. Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke 34:2495-2501, 2003 https://doi.org/10.1161/01.STR.0000091269.67384.E7
  13. Ginsberg MD, Sternau LL, Globus MY, Dietrich WD, Busto R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 4:189-225, 1992
  14. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA. Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab 23:589-98, 2003
  15. Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA. Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921-3928, 2002
  16. Han HS, Yenari MA. Cellular targets of brain inflammation in stroke. Curr Opin Investig Drugs 4:522-529, 2003
  17. Hicks SD, Parmele KT, DeFranco DB, Klann E, Callaway CW. Hypothermia differentially increases extracellular signal-regulated kinase and stress-activated protein kinase/c-Jun terminal kinase activation in the hippocampus during reperfusion after asphyxial cardiac arrest. Neuroscience 98:677-685, 2000 https://doi.org/10.1016/S0306-4522(00)00169-X
  18. Huang FP, Zhou LF, Yang GY. Effects of mild hypothermia on the release of regional glutamate and glycine during extended transient focal cerebral ischemia in rats. Neurochem Res 23:991- 996, 1998 https://doi.org/10.1023/A:1021088523137
  19. Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631- 647, 2002 https://doi.org/10.1038/sj.bmt.1701413
  20. Jope RS, Zhang L, Song L. Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys 376:365-370, 2000 https://doi.org/10.1006/abbi.2000.1728
  21. Karibe H, Chen SF, Zarow GJ, Gafni J, Graham SH, Chan PH, Weinstein PR. Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats. Brain Res 649:12-19, 1994a https://doi.org/10.1016/0006-8993(94)91043-X
  22. Karibe H, Zarow GJ, Graham SH, Weinstein PR. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 14:620- 627, 1994b https://doi.org/10.1038/jcbfm.1994.77
  23. Kato A, Singh S, McLeish KR, Edwards MJ, Lentsch AB. Mechanisms of hypothermic protection against ischemic liver injury in mice. Am J Physiol Gastrointest Liver Physiol 282:G608- G616, 2002
  24. Kawai N, Okauchi M, Morisaki K, Nagao S. Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats. Stroke 31:1982-1989, 2000 https://doi.org/10.1161/01.STR.31.8.1982
  25. Kil HY, Zhang J, Piantadosi CA. Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats. J Cereb Blood Flow Metab 16:100-106, 1996
  26. Lennmyr F, Ericsson A, Gerwins P, Ahlstrom H, Terent A. Increased brain injury and vascular leakage after pretreatment with p38-inhibitor SB203580 in transient ischemia. Acta Neurol Scand 108:339-345, 2003 https://doi.org/10.1034/j.1600-0404.2003.00129.x
  27. Maier CM, Ahern K, Cheng ML, Lee JE, Yenari MA, Steinberg GK. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 29:2171- 2180, 1998 https://doi.org/10.1161/01.STR.29.10.2171
  28. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA 98:11569-11574, 2001 https://doi.org/10.1073/pnas.181213498
  29. Piao CS, Kim JB, Han PL, Lee JK. Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res 73:537-544, 2003 https://doi.org/10.1002/jnr.10671
  30. Smith SL, Hall ED. Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat. J Neurotrauma 13:1-9, 1996 Sugino T, Nozaki K, Takagi Y. Activation of mitogenactivated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 20:4506-4514, 2000
  31. The Hypothermia After Cardiac Arrest Study Group. Mild thera peutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549-556, 2002 https://doi.org/10.1056/NEJMoa012689
  32. Thoresen M, Satas S, Puka-Sundvall M, Whitelaw A, Hallstrom A, Loberg EM, Ungerstedt U, Steen PA, Hagberg H. Posthypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport 8:3359-3362, 1997 https://doi.org/10.1097/00001756-199710200-00033
  33. Toyoda T, Suzuki S, Kassell NF, Lee KS. Intraischemic hypothermia attenuates neutrophil infiltration in the rat neocortex after focal ischemia-reperfusion injury. Neurosurgery 39:1200- 1205, 1996 https://doi.org/10.1097/00006123-199612000-00024
  34. Xu L, Yenari MA, Steinberg GK, Giffard RG. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J Cereb Blood Flow Metab 22:21-28, 2002 https://doi.org/10.1038/sj.bmt.1701276