Alteration of Immunoreactivity for SNARE Proteins in the Rat Hippocampus after Middle Cerebral Artery Occlusion

  • Park, Jung-Sun (Department of Pharmacology and Medical Research Institute, College of Medicine, Ewha Womans University) ;
  • Huh, Pil-Woo (Department of Neurosurgery, The Catholic University of Korea, Uijeongbu St. Mary's Hospital) ;
  • Jung, Yeon-Joo (Department of Pharmacology and Medical Research Institute, College of Medicine, Ewha Womans University) ;
  • Park, Su-Jin (Department of Pharmacology and Medical Research Institute, College of Medicine, Ewha Womans University) ;
  • Lee, Kyung-Eun (Department of Pharmacology and Medical Research Institute, College of Medicine, Ewha Womans University)
  • Published : 2004.06.21

Abstract

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins, composed of two presynaptic membrane proteins [synaptosomal-associated protein of 25 kDa (SNAP-25) and syntaxin] and a presynaptic vesicular protein [vesicle-associated membrane protein (VAMP)], serve as a core of exocytotic fusion machinery, which can be affected by ischemia. Synaptic protein in core region, striatum and cortex has been shown to alter after focal ischemia, however, little is known in hippocampus. Hippocampus is remote from ischemic core, but it is one of the most vulnerable regions. Using immunohistochemistry, the present study was undertaken to investigate the alteration of expression of SNAP-25, syntaxin, and VAMP in the hippocampus of rats which were subjected to middle cerebral artery occlusion (MCAO) for 2h and allowed to reperfuse. At 2 weeks of reperfusion, the SNAP-25 and syntaxin immunoreactivity was increased in the stratum oriens of the CA1 and the stratum lucidum of the CA3 in the ipsilateral hippocampus. However, VAMP immunoreactivity didn't show significant change. These results demonstrate that the level of the presynatpic plasma membrane proteins (SNAP-25 and syntaxin) in the rat hippocampus is more sensitively affected by focal ischemia than that of the synaptic vesicle protein (VAMP).

Keywords

References

  1. Bclaycy L, Alonso OF, Busto R, Zhao W, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improve model. Stroke 27: 1616-1623, 1996 https://doi.org/10.1161/01.STR.27.9.1616
  2. Calakos N, Scheller RH. Synaptic vesicle biogenesis, docking, and fusion; a molecular description. Physiol Rev 76: 1-29, 1996 https://doi.org/10.1152/physrev.1996.76.1.1
  3. Eichenbaum H, Otto T, Cohen EJ. The hippocampus-what does it do?. Behav Neural Biol 57: 2-36, 1992 https://doi.org/10.1016/0163-1047(92)90724-I
  4. Fon ED, Edwards RH. Molecular mechanisms of neurotransmitter release. Muscle Nerve 24: 581-601, 2001 https://doi.org/10.1002/mus.1044
  5. Ishimaru H, Casamenti F, Ueda K, Maruyama Y, Pepeu G. Changes in presynaptic proteins, SNAP25, and synaptophysin in the hippocampal CA1 area in ischemic gerbils. Brain Res 903: 94-101, 2001 https://doi.org/10.1016/S0006-8993(01)02439-8
  6. Jarrad LE. On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60: 9-26, 1993 https://doi.org/10.1016/0163-1047(93)90664-4
  7. Kirino T, Sano K. Sensitive vulnerability in the gerbil hippocampus following transient ischemia. Acta Nueophathol 62: 201-208, 1984 https://doi.org/10.1007/BF00691853
  8. Kiyota Y, Miyamoto M, Nagaoloa A. Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia. Brain Res 528: 21-24, 1990 https://doi.org/10.1016/0006-8993(90)90189-I
  9. Manzur A, Sosa M, Sehzer AM. Transient increase in Rab 3A and synaptobrevin immunoreactivity after mild hypoxia in neonatal rat. Cell Mole Neurol 21: 39-52, 2001 https://doi.org/10.1023/A:1007169228329
  10. Marti E, Ferrer I, Ballabriga J, Blasi J. Increase in SNAP-25 immunoreactivity in the mossy fibers following transient forebrain ischemia in the gerbil. Acta Neuropathol 95: 254-260, 1998 https://doi.org/10.1007/s004010050795
  11. Martinez-Arca S, Alberts P, Zahraoui A, Louvard D, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in vesicular transport mediating neurite outgrowth. J Cell Biol 149: 889-899, 2000 https://doi.org/10.1083/jcb.149.4.889
  12. Nicoll RA, Lauker JA, Malenka RC. The current excitement in long-term potentiatio. Neuron 1: 97-103, 1988 https://doi.org/10.1016/0896-6273(88)90193-6
  13. Niemamm H, Blasi J, Jahn R. Clostridial neurotoxin: new tools for dissecting exocytosis. Trend Cell Biol 4: 179-185, 1994 https://doi.org/10.1016/0962-8924(94)90203-8
  14. Okada M, Nakinishi H, Tamura A, Urae A, Mine K, Yamamoto K, Fujiwara M. Long-term spatial cognitive impairment after middle cerebral artery occlusion in rats: no involvement of the hippocampus. J Cerebral Blood Flow Metab 15: 1012-1021, 1995 https://doi.org/10.1038/jcbfm.1995.127
  15. Pevsner J, Hsu SC, Braum JE, Calkos N, Ting A, Bennette MK, Schller RH. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13: 353-361, 1994 https://doi.org/10.1016/0896-6273(94)90352-2
  16. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient ischemia. Ann Neurol 11: 492-498, 1982
  17. Rothman JE. Mechanisms of intracellular protein transport. Nature 372: 55-63, 1994 https://doi.org/10.1038/372055a0
  18. Sakai N, Yanai K, Ryu JH, Nagasawa H, Hasegawa T, Sasaki T, Logure K, Watanabe T. Behavioral studies on rats with transient cerebral ischemia induced by occlusion of the middle cerebral artery. Behav Brain Res 77: 181-188, 1996 https://doi.org/10.1016/0166-4328(95)00232-4
  19. Schmidt-Kastner R, Freund TF. Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40: 599-636, 1991 https://doi.org/10.1016/0306-4522(91)90001-5
  20. Shudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interaction. Nature 22(375): 645-653, 1995
  21. Shiavo G, Benfenati F, Poulain B, Rosseto O, Polverino de Laureto P, Dasgupta BR, Montecucco C. Tetanus and botulinum B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832-835, 1992 https://doi.org/10.1038/359832a0
  22. Shiavo G, Rossetto O, Montecucco C. Clostridial neurotoxins as tools to investigate the molecular events of neurotransmitter release. Semin Cell Biol 5: 221-229, 1994 https://doi.org/10.1006/scel.1994.1028
  23. Sollner T, Rothmann FE. Neurotransmission: harnessing fusion machinery at the synapse. Trend Neurosci 17: 344-347, 1994 https://doi.org/10.1016/0166-2236(94)90178-3
  24. Sollner T, Whiteheart S, Brunner M, Erdjument-Bromage H, Geromanos S, Tepst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318-324, 1993a https://doi.org/10.1038/362318a0
  25. Sollner T, Ennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409-418, 1993b https://doi.org/10.1016/0092-8674(93)90376-2
  26. Steward O, Scoville SA. Cell of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 16: 347-370, 1976
  27. Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J Comp Neurol 167: 285-314, 1976 https://doi.org/10.1002/cne.901670303
  28. Stroemer RP, Kent TA, Hulsebosch CE. Increase in synaptophysin immunoreactivity following cortical infarction. Neurosci Lett 147: 21-24, 1992 https://doi.org/10.1016/0304-3940(92)90765-Y
  29. Swanson LW, Wyss JM, Cowan WM. An autographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181: 681-716, 1978 https://doi.org/10.1002/cne.901810402
  30. Tamamaki N. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus. J Comp Neurol 411: 257-266, 1999 https://doi.org/10.1002/(SICI)1096-9861(19990823)411:2<257::AID-CNE6>3.0.CO;2-8
  31. Wood ER, Mumby DG, Pinel JPJ, Phillips AG. Impaired object recognition memory in rats following ischemia-induced damage to the hippocampus. Behav Neurosci 106: 457-464, 1992 https://doi.org/10.1037/0735-7044.106.3.457
  32. Yam PS, Dewar D, McCulloch J. Axonal injury caused by focal cerebral ischemia in the rat. J Neurotrauma 15: 441-450, 1998 https://doi.org/10.1089/neu.1998.15.441
  33. Yang G., Kitagawa K, Ohtsuki T, Kuwabara K, Mabchi T, Yagita Y, Takazawa K, Tanaka S, Yanagihara T, Hori M, Matsumoto M. Regional difference of neuronal vulnerability in the murine hippocampus after transient forebrain ischemia. Brain Res 870: 195-198, 2000 https://doi.org/10.1016/S0006-8993(00)02319-2
  34. ZeaLonga E, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84-91, 1989 https://doi.org/10.1161/01.STR.20.1.84
  35. Zucker RS. Exocytosis: A molecular and physiological perspective. Neuron 17: 1049-1053, 1996 https://doi.org/10.1016/S0896-6273(00)80238-X