Presynaptic Mechanism Underlying Regulation of Transmitter Release by G Protein Coupled Receptors

  • Takahashi, Tomoyuki (Department of Neurophysiology, University of Tokyo Graduate School of Medicine) ;
  • Kajikawa, Yoshinao (Department of Neurophysiology, University of Tokyo Graduate School of Medicine) ;
  • Kimura, Masahiro (Department of Neurophysiology, University of Tokyo Graduate School of Medicine) ;
  • Saitoh, Naoto (Department of Neurophysiology, University of Tokyo Graduate School of Medicine) ;
  • Tsujimoto, Tetsuhiro (Department of Neurophysiology, University of Tokyo Graduate School of Medicine)
  • Published : 2004.04.21

Abstract

A variety of G protein coupled receptors (GPCRs) are expressed in the presynaptic terminals of central and peripheral synapses and play regulatory roles in transmitter release. The patch-clamp whole-cell recording technique, applied to the calyx of Held presynaptic terminal in brainstem slices of rodents, has made it possible to directly examine intracellular mechanisms underlying the GPCR-mediated presynaptic inhibition. At the calyx of Held, bath-application of agonists for GPCRs such as $GABA_B$ receptors, group III metabotropic glutamate receptors (mGluRs), adenosine $A_1$ receptors, or adrenaline ${\alpha}2$ receptors, attenuate evoked transmitter release via inhibiting voltage-activated $Ca^{2+}$ currents without affecting voltage-activated $K^+$ currents or inwardly rectifying $K^+$ currents. Furthermore, inhibition of voltage-activated $Ca^{2+}$ currents fully explains the magnitude of GPCR-mediated presynaptic inhibition, indicating no essential involvement of exocytotic mechanisms in the downstream of $Ca^{2+}$ influx. Direct loadings of G protein ${\beta}{\gamma}$ subunit $(G{\beta}{\gamma})$ into the calyceal terminal mimic and occlude the inhibitory effect of a GPCR agonist on presynaptic $Ca^{2+}$ currents $(Ip_{Ca})$, suggesting that $G{\beta}{\gamma}$ mediates presynaptic inhibition by GPCRs. Among presynaptic GPCRs glutamate and adenosine autoreceptors play regulatory roles in transmitter release during early postnatal period when the release probability (p) is high, but these functions are lost concomitantly with a decrease in p during postnatal development.

Keywords

References

  1. Barnes-Davies M, Forsythe ID. Pre and postsynaptic gluatmate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol 488: 387-406, 1995 https://doi.org/10.1113/jphysiol.1995.sp020974
  2. Baskys A, Malenka RC. Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444: 687-701, 1991 https://doi.org/10.1113/jphysiol.1991.sp018901
  3. Blackmer T, Larsen EC, Takahashi M, Martin TFJ, Alford S, Hamm HE. G protein $\beta$$\gamma$ subunit-mediated presynaptic inhibi- tion: regulation of exocytotic fusion ownstream of Ca2$^+$ entry. Science 292: 293-297, 2001 https://doi.org/10.1126/science.1058803
  4. Bolshakov VY, Siegelbaum SA. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269: 1730-1734, 1995 https://doi.org/10.1126/science.7569903
  5. Borst JGG, Helmchen F, Sakmann B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489: 825-840, 1995 https://doi.org/10.1113/jphysiol.1995.sp021095
  6. Brenowitz S, David J, Trussell L. Enhancement of synaptic efficacy by presynaptic GABAB receptors. Neuron 20: 135-141, 1998. https://doi.org/10.1016/S0896-6273(00)80441-9
  7. Campbell V, Berrow N, Dolphin AC. GABAB receptor modulation of Ca2$^+$ currents in rat sensory neurones by the G protein GO: adrenoceptor oligonucleotide studies. J Physiol 470: 1-11, 1993 https://doi.org/10.1113/jphysiol.1993.sp019842
  8. Caufield MP, Jones S, Vallis Y, Buckley NJ, Kim GD, Milligan G, Brown DA. Muscarinic M-current inhibition via G${\alpha}_{q/11}$ and $\alpha$- adrenoreceptor inhibition of Ca$^{2+}$ current via G${\alpha}_O$ in rat sympathetic neurones. J Physiol 477: 415-422, 1994 https://doi.org/10.1113/jphysiol.1994.sp020203
  9. Del Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol 124: 560-573, 1954 https://doi.org/10.1113/jphysiol.1954.sp005129
  10. De Waard M, Liu H, Walker D, Scott VES, Gurnett CA, Campbell KP. Direct binding of G-protein $\beta$$\gamma$ complex to voltage-dependent calcium channels. Nature 385: 446-450, 1997 https://doi.org/10.1038/385446a0
  11. Dolphin AC, Scott RH. Calcium channel currents and their inhibition by (-) baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol 386: 1-17, 1987
  12. Dunwiddie TV, Diao L, Proctor WR. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17: 7673-7682, 1997
  13. Forsythe ID. Direct patch recording from identified presynaptic terminals mediating gluatmatergic EPSCs in the rat CNS, in vitro. J Physiol 479: 381-387, 1994 https://doi.org/10.1113/jphysiol.1994.sp020303
  14. Forsythe ID, Clements JD. Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J Physiol 429: 1-16, 1990
  15. Friauf E, Lohmann C. Development of auditory brainstem circuitry. Activity-dependent and activity-independent processes. Cell Tissue Res 297: 187-195, 1999 https://doi.org/10.1007/s004410051346
  16. Futai K, Okada M, Matsuyama K, Takahashi T. High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J Neurosci 21: 3342- 3349, 2001
  17. Harada Y, Takahashi T, Kuno M, Nakayama K, Masu Y, Nakanishi S. Expression of two different tachykinin receptors in Xenopus oocytes by exogenous mRNAs. J Neurosci 7: 3265-3273, 1987
  18. Hayashi Y, Momiyama A, Takahashi T, Ohishi H, Ogawa-Meguro R, Shigemoto R, Mizuno N, Nakanishi S. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366: 687-690, 1993 https://doi.org/10.1038/366687a0
  19. Held H. Die centrale Gehorleitung. Arch Anat Physiol Anat Abt 17:201-248, 1893
  20. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. TINS 17: 531-536, 1994
  21. Hori Y, Endo K, Takahashi T. Presynaptic inhibitory action of enkephalin on excitatory transmission in superficial dorsal horn of rat spinal cord. J Physiol 450: 673-685, 1992 https://doi.org/10.1113/jphysiol.1992.sp019149
  22. Hugel S, Schlichter R. Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 551: 479-489, 2003 https://doi.org/10.1113/jphysiol.2003.047894
  23. Ishikawa T, Nakamura Y, Saitoh N, Li W-B, Iwasaki S, Takahashi T. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci 23: 10445-10453, 2003
  24. Issacson JS. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J Neurophysiol 80: 1571-1576, 1998
  25. Iwasaki S, Takahashi T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509: 419-423, 1998 https://doi.org/10.1111/j.1469-7793.1998.419bn.x
  26. Iwasaki S, Takahashi T. Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem. J Physiol 534: 861-871, 2001 https://doi.org/10.1111/j.1469-7793.2001.00861.x
  27. Iwasaki S, Momiyama A, Uchitel OD, Takahashi T. Developmental changes in calcium channel types mediating central synaptictransmission. J Neurosci 20: 59-65, 2000
  28. Jiang M, Gold MS, Boulay G, Spicher K, Peyton M, Brabet P, Srinivasan Y, Rudolph U, Ellison G, Birnbaumer L. Multiple neurological abnormalities in mice deficient in the G protein GO. Proc Natl Acad Sci USA 95: 3269-3274, 1998 https://doi.org/10.1073/pnas.95.6.3269
  29. Joshi I, Wang L-Y. Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. J Physiol 540: 861-873, 2002 https://doi.org/10.1113/jphysiol.2001.013506
  30. Kajikawa Y, Saitoh N, Takahashi T. GTP-binding protein ${\beta}{\gamma}$ subunits mediate presynaptic calcium current inhibition by GABA$_{B}$ receptor. Proc Natl Acad Sci USA 98: 8054-8058, 2001. https://doi.org/10.1073/pnas.141031298
  31. Kandler K, Friauf E. Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328: 161-184, 1993 https://doi.org/10.1002/cne.903280202
  32. Katz B, Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol 203:459-487, 1969 https://doi.org/10.1113/jphysiol.1969.sp008875
  33. Kimura M, Saitoh N, Takahashi T. Adenosine A1 receptormediated presynaptic inhibition at the calyx of Held of immature rats. J Physiol 553: 415-426, 2003 https://doi.org/10.1113/jphysiol.2003.048371
  34. Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B. Assignment of G-protein subtypes to specific receptors including inhibition of calcium currents. Nature 353: 43-48, 1991 https://doi.org/10.1038/353043a0
  35. Leao RM, von Gersdorff H. Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release. J Neurophysiol 87: 2297-2306, 2002 https://doi.org/10.1152/jn.2002.87.5.2297
  36. Liang Y-C, Huang C-C, Hsu K-S, Takahashi T. Cannabinoidinduced presynaptic inhibition at the primary afferent trigeminal synapse of juvenile rat brainstem in slices. J Physiol 555: 85-96, 2004 https://doi.org/10.1113/jphysiol.2003.056986
  37. Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA. G proteincoupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19: 687-695, 1997 https://doi.org/10.1016/S0896-6273(00)80381-5
  38. Momiyama T, Koga E. Dopamine D2-like receptors selectively block N-type Ca2$^+$ channels to reduce GABA release onto rat striatal cholinergic interneurones. J Physiol 533: 479-492, 2001 https://doi.org/10.1111/j.1469-7793.2001.0479a.x
  39. Moore KA, Nicoll RA, Schmitz D. Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 100, 14397-14402, 2003 https://doi.org/10.1073/pnas.1835831100
  40. Nicoll RA. The coupling of neurotransmitter receptors to ion channels in the brain. Science 241: 545-551, 1988 https://doi.org/10.1126/science.2456612
  41. Parker I, Sumikawa K, Miledi R. Activation of a common effector system by different brain neurotransmitter receptors in Xenopus oocytes. Proc R Soc Lond B 231: 37-45, 1987 https://doi.org/10.1098/rspb.1987.0034
  42. Sahara Y, Takahashi T. Quantal components of the excitatory postsynaptic currents at a rat central auditory synapse. J Physiol 536: 189-197, 2001 https://doi.org/10.1111/j.1469-7793.2001.00189.x
  43. Sakaba T, Neher E. Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424: 775-778, 2003 https://doi.org/10.1038/nature01859
  44. Scanziani M, Capogna M, Gahwiler BH, Thompson SM. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Neuron 9: 919-927, 1992 https://doi.org/10.1016/0896-6273(92)90244-8
  45. Scholz KP, Miller RJ. GABAB receptor-mediated inhibition of Ca2$^+$ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol 444: 669-686, 1991 https://doi.org/10.1113/jphysiol.1991.sp018900
  46. Sladeczek F, Momiyama A, Takahashi T. Presynaptic inhibitory action of a metabotropic glutamate receptor agonist on excitatorytransmission in visual cortical neurons. Proc R Soc Lond B 253: 297-303, 1993 https://doi.org/10.1098/rspb.1993.0117
  47. Takahashi T, Neher E, Sakmann B. Rat brain serotonin receptors in Xenopus oocytes are coupled by intracellular calcium to endogenous channels. Proc Natl Acad Sci USA 84: 5063-5067, 1987 https://doi.org/10.1073/pnas.84.14.5063
  48. Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274: 594-597, 1996 https://doi.org/10.1126/science.274.5287.594
  49. Takahashi T, Kajikawa Y, Tsujimoto T. G-protein-coupled modulation of presynaptic calcium currents and transmitter releaseby a GABAB receptor. J Neurosci 18: 3138-3146, 1998
  50. Takahashi T, Hori T, Kajikawa Y, Tsujimoto T. The role of GTP-binding protein activity in fast central synaptic transmission. Science 289: 460-463, 2000 https://doi.org/10.1126/science.289.5478.460
  51. Takano K, Yasufuku-Takano J, Kozasa T, Nakajima S, Nakajima Y. Different G proteins mediate somatostatin-induced inward rectifier K$^+$ currents in murine brain and endocrine cells. J Physiol 502: 559-567, 1997 https://doi.org/10.1111/j.1469-7793.1997.559bj.x
  52. Taschenberger H, von Gersdorff H. Fine-tuning an auditory synapse for speed and fidelity: Developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20: 9162-9173, 2000
  53. Taschenberger H, Leao RM, Rowland KC, Spirou GA, von Gersdorff H. Optimizing synaptic architecture and efficiency for highfrequency transmission. Neuron 36: 1127-1143, 2002 https://doi.org/10.1016/S0896-6273(02)01137-6
  54. Thompson SM, Capogna M, Scanziani M. Presynaptic inhibition in the hippocampus. TINS 16: 222-227, 1993
  55. Umemiya M, Berger AJ. Activation of adenosine A1 and A2 receptors differentially modulates calcium channels and glycinergic synaptic transmission in rat brainstem. Neuron 13: 1439-1446, 1994 https://doi.org/10.1016/0896-6273(94)90429-4
  56. Von Gersdorff H, Schneggenburger R, Weis S, Neher E. Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J Neurosci 17: 8137-8146, 1997
  57. Wu L-G, Borst JGG, Sakmann B. R-type Ca2$^+$currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci USA 95: 4720-4725, 1998 https://doi.org/10.1073/pnas.95.8.4720
  58. Wu L-G, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19: 726-736, 1999
  59. Yamashita T, Ishikawa T, Takahashi T. Developmental increase in vesicular glutamate content dose not cause saturation of AMPA receptors at the calyx of Held synapse. J Neurosci 23: 3633-3638, 2003
  60. Yamauchi T, Hori T, Takahashi T. Presynaptic inhibition by muscimol through GABAB receptors. Eur J Neurosci 12: 3433- 3436, 2000 https://doi.org/10.1046/j.1460-9568.2000.00248.x
  61. Yawo H, Chuhma N. Preferential inhibition of $\omega$-conotoxin-sensitive presynaptic Ca2$^+$channels by adenosine autoreceptors. Nature 365: 256-258, 1993 https://doi.org/10.1038/365256a0