DOI QR코드

DOI QR Code

Canonical Transformations for Time-Dependent Harmonic Oscillators

  • Published : 2004.02.20

Abstract

A canonical transformation changes variables such as coordinates and momenta to new variables preserving either the Poisson bracket or the commutation relations depending on whether the problem is classical or quantal respectively. Classically canonical transformations are well established as a powerful tool for solving differential equations. Quantum canonical transformations have been defined and used relatively recently because of the non-commutativeness of the quantum variables. Three elementary canonical transformations and their composite transformations have quantum implementations. Quantum canonical transformations have been mostly used in time-independent Schrodinger equations and a harmonic oscillator with time-dependent angular frequency is probably the only time-dependent problem solved by these transformations. In this work, we apply quantum canonical transformations to a harmonic oscillator in which both angular frequency and equilibrium position are time-dependent.

Keywords

References

  1. Goldstein, H. ClassicalMechanics, 2nd Ed.; Addison-Wesley: Reading, MA, 1980; p 55.
  2. Born, M.; Heisenberg, W.; Jordan, P. Z. Phys. 1926, 35, S557. https://doi.org/10.1007/BF01379806
  3. Anderson, A. Ann. Phys. 1994, 232, 292. https://doi.org/10.1006/aphy.1994.1055
  4. Deenen, J. J. Phys. A 1991, 24, 3851. https://doi.org/10.1088/0305-4470/24/16/022
  5. Infeld, L.; Hull, T. E. Rev. Mod. Phys. 1951, 23, 21. https://doi.org/10.1103/RevModPhys.23.21
  6. Anderson, A. Phys. Rev. D 1988, 37, 536. https://doi.org/10.1103/PhysRevD.37.536
  7. Anderson, A. Phys. Rev. A 1991, 43, 4602. https://doi.org/10.1103/PhysRevA.43.4602
  8. Iachello, F.; Levine, R. D. Algebraic Theory of Molecules; Oxford University Press: New York, 1995.
  9. Phys. Rev. A v.65 Tsaur, G.-y.;Wang, J. https://doi.org/10.1103/PhysRevA.65.012104
  10. Tsaur, G.-y.; Wang, J. Phys. Rev. A 2001, 65, 012104. https://doi.org/10.1103/PhysRevA.65.012104
  11. Lewis, Jr., H. R. J. Math. Phys. 1968, 9, 1976. https://doi.org/10.1063/1.1664532
  12. Yeon, K. H.; Kim, D. H.; Um, C. I.; George, T. F.; Pandey, L. N.Phys. Rev. A 1997, 55, 4023. https://doi.org/10.1103/PhysRevA.55.4023
  13. Bull. Korean Chem. Soc. v.23 Park, T. J. https://doi.org/10.5012/bkcs.2002.23.2.355
  14. Feng, M. Phys. Rev. A 2001, 64, 034101-1.
  15. Park, T. J. Bull. Korean Chem. Soc. 2002, 23, 355. https://doi.org/10.5012/bkcs.2002.23.2.355
  16. Park, T. J. Bull. Korean Chem. Soc. 2002, 23, 1733. https://doi.org/10.5012/bkcs.2002.23.12.1733

Cited by

  1. Displacing, squeezing, and time evolution of quantum states for nanoelectronic circuits vol.8, pp.1, 2013, https://doi.org/10.1186/1556-276X-8-30
  2. Quantum features of a charged particle in ionized plasma controlled by a time-dependent magnetic field vol.2, pp.None, 2014, https://doi.org/10.3389/fphy.2014.00045
  3. Quantum cosmology of a conformal multiverse vol.96, pp.6, 2004, https://doi.org/10.1103/physrevd.96.063511
  4. Quantum Cosmology with Third Quantisation vol.7, pp.11, 2004, https://doi.org/10.3390/universe7110404