DOI QR코드

DOI QR Code

Novel Silica Nanotubes Using a Library of Carbohydrate Gel Assemblies as Templates for Sol-Gel Transcription in Binary Systems

  • Jung, Jong-Hwa (Nano Material Team, Korea Basic Science Institute (KBSI), CREST, Japan Science and Technology Corporation (JST), Nanoarchitectonics Research Center (NARC), National Institute of Advanced Industrial Science and Technology(AIST)) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Shinkai, Seiji (Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University) ;
  • Iwaura, Rika (Naoarchitectonics Research Center (NARC), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Shimizu, Toshimi (Naoarchitectonics Research Center (NARC), National Institute of Advanced Industrial Science and Technology (AIST), CREST, Japan Science and Technology Corporation (JST))
  • Published : 2004.01.20

Abstract

Sugar-based gelator p-dodecanoyl-aminophenyl- ${\beta}$-D-aldopyranosides (1-3) have been shown to self-assemble in the presence of p-aminophenyl aldopyranosides. The hydrogel 1+4 showed the double-helical structure with 3-25 nm outer diameters, which is quite different from that of 1. The gel 2+5 revealed twisted ribbon structure with 30-50 nm in widths and a few micrometers of length whereas the gel 3+4 revealed the single and the bundled fiber structures. The difference in these gel supramolecular structures has successfully been transcribed into silica structures by sol-gel polymerization of tetraethoxysilane (TEOS), resulting in the doublehelical, the twisted-ribbon, the single and the multiple (lotus-shaped) hollow fiber structures. These results indicate that novel silica structures can be created by transcription of various superstructures formed in binary gels through the hydrogen-bonding interaction, and the amino group of the p-aminophenyl aldopyranosides acts as an efficient driving force to create novel silica nanotubes. Furthermore, electron energy-loss spectroscopy (ELLS) provided strong evidence for the inner hollow structure of the double-helical silica nanotube. This is a novel and successful example that a variety of new silica structures can be created using a library of carbohydrate gel fibers as their templates.

Keywords

References

  1. Mann, S. Biomimetic Materials Chemistry; Mann, S., Ed.; VCH: New York, 1996.
  2. Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692. https://doi.org/10.1038/386692a0
  3. Behrens, P.; Stucky, G. D. Angew. Chem. Int. Ed. Engl. 1993, 32, 696. https://doi.org/10.1002/anie.199306961
  4. Miyaji, F.; Davis, S. A.; Charmant, J. P. H.; Mann, S. Chem. Mater. 1999, 11, 3021. https://doi.org/10.1021/cm990449v
  5. Ozin, G. A. Chem. Commun. 2000, 419.
  6. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
  7. Caruso, F.; Lischtenfeld, H.; Giersig, M.; Möhwald, H. J. Am. Chem. Soc. 1998, 120, 8523. https://doi.org/10.1021/ja9815024
  8. Fujikawa, S.; Kunitake, T. Chem. Lett. 2002, 1134.
  9. Velev, O.; Jede, T. A.; Lobo, R. F.; Lehnoff, A. M. Chem. Mater. 1998, 10, 3597. https://doi.org/10.1021/cm980444i
  10. Miyaji, F.; Davis, S. A.; Charmant, J. P. H.; Mann, S. Chem. Mater. 1998, 10, 3597. https://doi.org/10.1021/cm980444i
  11. Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Commun. 1998, 1477.
  12. Ono, Y.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Lett. 1999, 23.
  13. Kobayashi, S.; Hamasaki, N.; Suzuki, M.; Kimura, M.; Shirai, H.; Hanabusa, K. J. Am. Chem. Soc. 2002, 122, 5008. https://doi.org/10.1021/ja000449s
  14. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664 and references cited therein. https://doi.org/10.1021/ja00094a023
  15. James, T. D.; Murata, K.; Harada, T.; Ueda, K.; Shinkai, S. Chem. Lett. 1994, 273.
  16. Jeong, S. W.; Murata, K.; Shinkai, S. Supramol. Sci. 1996, 3, 83. https://doi.org/10.1016/0968-5677(96)00021-1
  17. Shinkai, S.; Murata, K. J. Mater. Chem., (Feature Article) 1998, 8, 485. https://doi.org/10.1039/a704820c
  18. Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G. J. Am. Chem. Soc. 2000, 122, 2399. https://doi.org/10.1021/ja993991t
  19. Duncan, D. C.; Whitten, D. G. Langmuir 2000, 16, 6445. https://doi.org/10.1021/la0001631
  20. Terech, P.; Weiss, R. G. Chem. Rev. 1997, 97, 3313. https://doi.org/10.1021/cr960144p
  21. Kawano, S.-I.; Fujita, N.; Bommel, K. J. C.; Shinkai, S. Chem. Lett. 2003, 12.
  22. Hanabusa, K.; Yamada, M.; Kimura, M.; Shirai, H. Angew. Chem. Int. Ed. Engl. 1996, 35, 1949. https://doi.org/10.1002/anie.199619491
  23. de Loos, M.; van Esch, J.; Stokroos, I.; Kellogg, R. M.; Feringa, B. L. J. Am. Chem. Soc. 1997, 119, 12675. https://doi.org/10.1021/ja972899z
  24. Schoonbeek, F. S.; Esch, J. H.; Hulst, R.; Kellogg, R. M.; Feringa, B. L. Chem. Eur. J. 2000, 6, 2633. https://doi.org/10.1002/1521-3765(20000717)6:14<2633::AID-CHEM2633>3.0.CO;2-L
  25. Nakashima, T.; Kimizuka, N. Adv. Mater. 2002, 14, 1113. https://doi.org/10.1002/1521-4095(20020816)14:16<1113::AID-ADMA1113>3.0.CO;2-U
  26. Esch, J. H.; Feringa, B. L. Angew. Chem. Int. Ed. Engl. 2000, 39, 2263. https://doi.org/10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V
  27. Yoza, K.; Amanokura, N.; Ono, Y.; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai, S.; Reinhout, D. L. Chem. Eur. J. 1999, 5, 2722. https://doi.org/10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N
  28. Nakamura, H.; Matsui, Y. J. Am. Chem. Soc. 1995, 117, 2651. https://doi.org/10.1021/ja00114a031
  29. Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo, J.; Shinkai, S. Chem. Commun. 1998, 1477.
  30. Jung, J. H.; Ono, Y.; Shinkai, S. Angew. Chem., Int. Ed. Engl. 2000, 39, 1862. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1862::AID-ANIE1862>3.0.CO;2-3
  31. Jung, J. H.; Ono, Y.; Shinkai, S. Langmuir 2000, 16, 1643. https://doi.org/10.1021/la990901p
  32. Jung, J. H.; Ono, Y.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 1999, 1289.
  33. Jung, J. H.; Ono, Y.; Hanabusa, K.; Shinkai, S. J. Am. Chem. Soc. 2000, 122, 5008. https://doi.org/10.1021/ja000449s
  34. Jung, J. H.; Amaike, M.; Shinkai, S. Chem. Commun. 2000, 2343.
  35. Jung, J. H.; Shinkai, S. J. Chem. Soc., Perkin Trans. 2 2000, 2393.
  36. Amanokura, N.; Kanekiyo, Y.; Shinkai, S.; Reinhoudt, D. L. J. Chem. Soc., Perkin Trans. 2 1999, 1995.
  37. Yoza, K.; Ono, Y.; Yoshihara, K.; Akao, T.; Shinmori, H.; Takeuchi, M.; Shinkai, S.; Reinhoudt, D. L. Chem. Commun. 1998, 907.
  38. Hafkamp, R. J. H.; Feiters, M. C.; Nolte, R. J. M. J. Org. Chem. 1999, 64, 412. https://doi.org/10.1021/jo981158t
  39. Beginn, U.; Keinath, S.; Moller, M. Macromol. Chem. Phys. 1998, 199, 2379. https://doi.org/10.1002/(SICI)1521-3935(19981101)199:11<2379::AID-MACP2379>3.0.CO;2-2
  40. Sugiyasu, K.; Tamaru, S.; Takeuchi, M.; Berthier, D.; Huc, I.; Oda, R.; Shinkai, S. Chem. Commun. 2002, 1212.
  41. Jung, J. H.; Shinkai, S.; Shimizu, T. Chem. Eur. J. 2002, 8, 2684. https://doi.org/10.1002/1521-3765(20020617)8:12<2684::AID-CHEM2684>3.0.CO;2-Z
  42. Jung, J. H.; John, D.; Masuda, M.; Yoshida, K.; Shinkai, S.; Shimizu, T. Langmuir 2001, 17, 7229. https://doi.org/10.1021/la0109516

Cited by

  1. Templated-assisted one-dimensional silica nanotubes: synthesis and applications vol.21, pp.17, 2011, https://doi.org/10.1039/c0jm04516k
  2. Small-angle X-ray scattering structural study of the nanofiber self-assembly process in supramolecular gels based on glucopyranosides vol.47, pp.4, 2014, https://doi.org/10.1107/S160057671401228X
  3. Relationship between polarity of template hydrogel and nanoporous structure replicated in sol-gel-derived silica matrix vol.114, pp.6, 2009, https://doi.org/10.1002/app.31095
  4. Organic Nanotube Induced by Photocorrosion of CdS Nanorod vol.25, pp.7, 2004, https://doi.org/10.5012/bkcs.2004.25.7.983
  5. Sol-gel Transcription of Novel Low-molecular-weight Hydrogel Assembly Based on 2'-Deoxyuridine into the Silica Structure vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.034
  6. Chemical Modification of Nucleic Acids toward Functional Nucleic Acid Systems vol.27, pp.5, 2004, https://doi.org/10.5012/bkcs.2006.27.5.613
  7. Carbohydrate Derived Organogelators and the Corresponding Functional Gels Developed in Recent Time vol.4, pp.2, 2004, https://doi.org/10.3390/gels4020052