References
- Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St. Clair, M. H.; Nusinoff-Lehrman, S.; Gallo, R. C.; Bolognesi, D. P.; Barry, D. W.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7096. https://doi.org/10.1073/pnas.82.20.7096
- Yarchoan, R.; Mitsuya, H.; Thomas, R. V.; Pluda, J. M.; Hartman, N. R.; Perno, C.-F.; Marczyk, K. S.; Allain, J.-P.; Johns, D. G.; Broder, S. Science 1989, 245, 412. https://doi.org/10.1126/science.2502840
- Choo, H.; Chong, Y.; Choi, Y.; Mathew, J.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2003, 46, 389. https://doi.org/10.1021/jm020376i
- Balzarini, J.; Pannecouque, C.; De Clercq, E.; Aquaro, S.; Perno, C.-F.; Egberink, H.; Holy, A. Antimicrob. Agents Chemother. 2002, 46, 2185. https://doi.org/10.1128/AAC.46.7.2185-2193.2002
- Miyasaka, T.; Tanaka, H.; Baba, M.; Miyakawa, H.; Walker, R. T.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1989, 32, 2507. https://doi.org/10.1021/jm00132a002
- Tantillo, C.; Ding, J.; Jacobo-Molina, A.; Nanni, R. G.; Boyer, P. L.; Hughes, S. H.; Pauwels, R.; Andries, K.; Janssen, P. A. J.; Arnold, E. J. Mol. Biol. 1994, 243, 369. https://doi.org/10.1006/jmbi.1994.1665
- Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Inouye, N.; Baba, M.; Shigeta, S.; Walker, R. T.; De Clercq, E.; Miyasaka, T. J. Med. Chem. 1995, 38, 2860. https://doi.org/10.1021/jm00015a008
- Rontikis, R.; Benhida, R.; Aubertin, A.-M.; Greirson, D. S.; Monneret, C. J. Med. Chem. 1996, 39, 2427. https://doi.org/10.1021/jm9600499
- Danel, K.; Larsen, E.; Pedersen, E. B.; Vestergaard, B. F.; Nielsen, C. J. Med. Chem. 1997, 40, 1845. https://doi.org/10.1021/jm960765a
- Pedersen, O. S.; Pedersen, E. B. Antiviral Chem. Chemother. 1999, 10, 285.
- Mai, A.; Sbardella, G.; Artico, M.; Ragno, R.; Massa, S.; Novellino, E.; Greco, G.; Lavecchia, A.; Musiu, C.; La Colla, M.; Murgioni, C.; La Colla, P.; Loddo, R. J. Med. Chem. 2001, 44, 2544. https://doi.org/10.1021/jm010853h
- Nugent, R. A.; Schlachter, S. T.; Murphy, M. J.; Cleek, G. J.; Poel, T. J.; Wishka, D. R.; Yagi, Y.; Keiser, B. J.; Olmsted, R. A.; Kopta, L. A.; Swaney, S. M.; Poppe, S. M.; Morris, J.; Tarpley, G.; Thomas, R. C. J. Med. Chem. 1998, 41, 3793. https://doi.org/10.1021/jm9800806
- Cywin, C. L.; Klunder, J. M.; Hoermann, M.; Brickwood, J. R.; David, E.; Grob, P. M.; Schwartz, R.; Pauletti, D.; Barringer, K. J.; Shih, C.-K.; Sorge, C. L.; Erickson, D. A.; Joseph, D. P.; Hattox, S. E. J. Med. Chem. 1998, 41, 2972. https://doi.org/10.1021/jm9707030
- Glynn, S. L.; Yazdanian, M. J. Pharm. Sci. 1998, 87, 306. https://doi.org/10.1021/js970291i
- Proudfoot, J. R.; Hargrave, K. D.; Kapadia, S. R.; Patel, U. R.; Grozinger, K. G.; McNeil, D. W.; Cullen, E.; Cardozo, M.; Tong, L.; Rose, J.; David, E.; Mauldin, S. C.; Fuchs, V. U.; Vitous, J.; Hoermann, M.; Klunder, J. M.; Raghaven, P.; Skiles, J. W.; Mui, P.; Richman, D. D.; Sulivan, J. L.; Shih, C.-K.; Grob, P. M.; Adams, J. J. Med. Chem. 1995, 38, 4830. https://doi.org/10.1021/jm00024a010
- Kelly, T. A.; Proudfoot, J. R.; McNeil, D. W.; Patel, U. R.; David, E.; Hargrave, K. D.; Grob, P. M.; Cardozo, M.; Agarwal, A.; Adams, J. J. Med. Chem. 1995, 38, 4839. https://doi.org/10.1021/jm00024a011
- Kelly, T. A.; McNeil, D. W.; Rose, J. M.; David, E.; Shih, C.-K.; Grob, P. M. J. Med. Chem. 1997, 40, 2430. https://doi.org/10.1021/jm960837y
- Klunder, J. M.; Hoermann, M.; Cywin, C. L.; David, E.; Brickwood, J. R.; Schwartz, R.; Barringer, K. J.; Pauletti, D.; Shih, C.-K.; Erickson, D. A.; Sorge, C. L.; Joseph, D. P.; Hattox, S. E.; Adams, J.; Grob, P. M. J. Med. Chem. 1998, 41, 2960. https://doi.org/10.1021/jm9707028
- Heinisch, G.; Huber, E.; Matuszczak, B.; Maurer, A.; Prillinger, U. Arch. Pharm. 1997, 330, 29. https://doi.org/10.1002/ardp.19973300108
- Barth, B.; Dierich, G.; Heinisch, G.; Jenny, V.; Matuszczak, B.; Mereiter, K.; Planer, R.; Schoepf, I.; Stoiber, H.; Traugott, T.; Aufschnaiter, P. V. Antimicrob. Agents Chemother. 1996, 7, 300.
- Klunder, J. M.; Hargrave, K. D.; West, M.; Cullen, E.; Pal, K.; Behnke, M.; Kapadia, S. R.; McNeil, D. W.; Wu, J. C.; Chow, G. C.; Adams, J. J. Med. Chem. 1992, 35, 1887. https://doi.org/10.1021/jm00088a027
- Maruenda, H.; Johnson, F. J. Med. Chem. 1995, 38, 2145. https://doi.org/10.1021/jm00012a014
- Romero, D. L.; Morge, R. A.; Biles, C.; Berrios-Pena, N.; May, P. D.; Palmer, J. R.; Johnson, P. D.; Smith, H. W.; Busso, M.; Tan, C.-K.; Voorman, R. L.; Reusser, F.; Althaus, I. W.; So, A. G.; Resnick, L.; Tarpley, W. G.; Aristoff, P. A. J. Med. Chem. 1994, 37, 999. https://doi.org/10.1021/jm00033a018
- Romero, D. L.; Olmsted, R. A.; Poel, T. J.; Morge, R. A.; Biles, C.; Keiser, B. J.; Kopta, L. A.; Friis, J. M.; Hosley, J. D.; Stefanski, K. J.; Wishka, D. G.; Evans, D. B.; Morris, J.; Stehle, R. G.; Sharma, S. K.; Yagi, Y.; Voorman, R. L.; Adam, W. J.; Tarpley, W. G.; Thomas, R. C. J. Med. Chem. 1996, 39, 3769. https://doi.org/10.1021/jm960158n
- El-Emam, A. A.; Pedersen, E. B.; Jacobsen, J. P.; Nielsen, C. Bull. Soc. Chim. France 1993, 130, 817.
- Zahran, M. A.; Abdel-Megeid, A. E.-S.; Abdel-Rahman, A. A.; El-Emam, A. A.; Pedersen, E. B.; Nielsen, C. Heterocycles 1995, 41, 2507. https://doi.org/10.3987/COM-95-7183
- Larsen, E.; Daniel, K.; Vaaben, G. B.; El-Emam, A. A.; Pedersen, E. B.; Nielsen, C. Acta Chem. Scand. 1996, 50, 417. https://doi.org/10.3891/acta.chem.scand.50-0417
- El-Emam, A. A.; Nasr, M N.; Pedersen, E. B.; Fouad, T.; Nielsen, C. Phosphorus, Sulfur & Silicone and Rel. Elements 2001, 174, 25. https://doi.org/10.1080/10426500108040231
- Davoll, J.; Evans, D. D. J. Chem. Soc. 1960, 5041. https://doi.org/10.1039/jr9600005041
- Cresswell, M.; Wood, H. C. S. J. Chem. Soc. 1960, 4768. https://doi.org/10.1039/jr9600004768
- Ishikawa, I.; Ito, T.; Melik-Ohanjanian, R. G.; Takayanagi, H.; Mizuno, Y.; Ogura, H.; Kawahara, N. Heterocycles 1990, 31, 1641. https://doi.org/10.3987/COM-90-5472
- Hiramitsu, T.; Maki, Y. Synth. Commun. 1977, 177.
- Abou-Karam, M.; Shier, W. T. J. Nat. Prod. 1990, 53, 340. https://doi.org/10.1021/np50068a011
- Hufford, C. D.; Badria, F. A.; Abou-Karam, M.; Shier, W. T.; Rogers, R. D. J. Nat. Prod. 1991, 54, 1543. https://doi.org/10.1021/np50078a008
- Weinslow, O. S.; Kiser, O. S.; Fine, D.; Bader, J.; Shoemaker, R. H.; Boyd, M. R. J. Natl. Cancer Inst. 1989, 81, 577. https://doi.org/10.1093/jnci/81.8.577
Cited by
- )-dione vol.70, pp.11, 2014, https://doi.org/10.1107/S1600536814021382
- )-dione vol.70, pp.2, 2014, https://doi.org/10.1107/S1600536814000749
- 4-(2-Methoxyphenyl)piperazin-1-ium 6-chloro-5-isopropyl-2,4-dioxopyrimidin-1-ide vol.70, pp.3, 2014, https://doi.org/10.1107/S1600536814002256
- )-dione vol.70, pp.7, 2014, https://doi.org/10.1107/S1600536814013269
- One pot synthesis, antimicrobial and antioxidant activities of fused uracils: pyrimidodiazepines, lumazines, triazolouracil and xanthines vol.11, pp.1, 2017, https://doi.org/10.1186/s13065-017-0294-0
- Synthesis and Antimicrobial Activity of Some Novel 5-Alkyl-6-Substituted Uracils and Related Derivatives vol.16, pp.6, 2011, https://doi.org/10.3390/molecules16064764
- Synthesis of 6,7-Dihydro-5H-thiopyrano[2,3-d]pyrimidin-5-one Derivatives Starting with 4,6-Dichloro-2-(methylsulfanyl)pyrimidine vol.96, pp.2, 2018, https://doi.org/10.3987/COM-17-13840
- 담배조직을 이용한 바이오센서의 과산화수소 환원 최적 산도 vol.48, pp.6, 2004, https://doi.org/10.5012/jkcs.2004.48.6.654
- Synthesis of Certain 6-(Arylthio)uracils and Related Derivatives as Potential Antiviral Agents. vol.36, pp.2, 2004, https://doi.org/10.1002/chin.200502154
- EFFICIENT SYNTHESIS OF NOVEL 6-PHENYLTHIO-2,4- DISUBSTITUTED PYRIMIDINES vol.14, pp.6, 2004, https://doi.org/10.1515/hc.2008.14.6.443
- Some Observations on the Base-Catalyzed Cyclocondensation of 2,6-Dihalobenzaldehydes, Ethyl Cyanoacetate, and Thiourea vol.40, pp.10, 2004, https://doi.org/10.1080/00397910903098730
- Synthesis, reactions, and biological activity of 1,4-thiazepines and their fused aryl and heteroaryl derivatives: a review vol.32, pp.6, 2011, https://doi.org/10.1080/17415993.2011.607165
- Synthesis of novel 6-phenyl-2,4-disubstituted pyrimidine-5-carbonitriles as potential antimicrobial agents vol.46, pp.9, 2011, https://doi.org/10.1016/j.ejmech.2011.08.003
- Pyrimidine-5-carbonitriles - part III: synthesis and antimicrobial activity of novel 6-(2-substituted propyl)-2,4-disubstituted pyrimidine-5-carbonitriles vol.19, pp.6, 2004, https://doi.org/10.1515/hc-2013-0139
- Pyrimidine-5-carbonitriles - part III: synthesis and antimicrobial activity of novel 6-(2-substituted propyl)-2,4-disubstituted pyrimidine-5-carbonitriles vol.19, pp.6, 2004, https://doi.org/10.1515/hc-2013-0139
- Synthesis, antiviral, cytotoxicity and antitumor evaluations of A4 type of porphyrin derivatives vol.19, pp.6, 2004, https://doi.org/10.1142/s1088424615500480
- Synthesis, structural, conformational and DFT studies of N-3 and O-4 alkylated regioisomers of 5-(hydroxypropyl)pyrimidine vol.1091, pp.None, 2004, https://doi.org/10.1016/j.molstruc.2015.02.078
- 6-(Ar)Alkylamino-Substituted Uracil Derivatives: Lipid Mimetics with Potent Activity at the Orphan G Protein-Coupled Receptor 84 (GPR84) vol.3, pp.3, 2004, https://doi.org/10.1021/acsomega.7b02092
- Cytotoxicity and Molecular Targeting Study of Novel 2-Chloro-3- substituted Quinoline Derivatives as Antitumor Agents vol.16, pp.3, 2004, https://doi.org/10.2174/1570180815666180604090924
- Synthesis of Diverse Fused Tetracyclic Thiazepine-Chalcone Derivatives by Claisen-Schmidt Condensation Reaction and their Antimicrobial Activity vol.32, pp.11, 2020, https://doi.org/10.14233/ajchem.2020.22867
- Dioxotriazine derivatives as a new class of P2X3 receptor antagonists: Identification of a lead and initial SAR studies vol.37, pp.None, 2021, https://doi.org/10.1016/j.bmcl.2021.127833