DOI QR코드

DOI QR Code

Dependence of TiO2 Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells

  • Kang, Man-Gu (Electronics and Telecommunications Research Institute) ;
  • Ryu, Kwang-Sun (Electronics and Telecommunications Research Institute) ;
  • Chang, Soon-Ho (Electronics and Telecommunications Research Institute) ;
  • Park, Nam-Gyu (Electronics and Telecommunications Research Institute) ;
  • Hong, Jin-Sup (Division of Chemistry and Molecular Engineering, Korea University) ;
  • Kim, Kang-Jin (Division of Chemistry and Molecular Engineering, Korea University)
  • Published : 2004.05.20

Abstract

Keywords

References

  1. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; Kay, A.; Podicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115,6382. https://doi.org/10.1021/ja00067a063
  3. Wang, P.; Zakereeruddin, S. M.; Exnar, I.; Gratzel, M. Chem. Commun. 2002, 2972.
  4. Dittrich, T. Phys. Stat. Sol. (a) 2000, 182, 447. https://doi.org/10.1002/1521-396X(200011)182:1<447::AID-PSSA447>3.0.CO;2-G
  5. Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.;Arakawa, H. Sol. Energy Mater. Sol. Cells 2000, 64, 115. https://doi.org/10.1016/S0927-0248(00)00065-9
  6. Park, N.-G.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B2000, 104, 8989. https://doi.org/10.1021/jp994365l
  7. Ito, S.; Kitamura, T.; Wada, Y.; Yanagida, S. Sol. Energy Mater.Sol. Cells 2003, 76, 3. https://doi.org/10.1016/S0927-0248(02)00209-X
  8. Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.;Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949. https://doi.org/10.1021/jp993220b
  9. Jung, K.-H.; Jang, S.-R.; Vittal, R.; Kim, D.; Kim, K.-J. Bull.Korean Chem. Soc. 2003, 24, 1501. https://doi.org/10.5012/bkcs.2003.24.10.1501
  10. Park, N.-G.; Chang, S. H.; avn de Lagemaat, J.; Kim, K.-J.; Frank, A. J. Bull. Korean Chem. Soc. 2000, 21, 985.
  11. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M. J. Phys. Chem. B 2003, 107, 8981. https://doi.org/10.1021/jp022656f
  12. Gratzel, M.; Kalyanasundaram, K. Curr. Sci. 1994, 66, 706.
  13. Ito, S.; Ishikawa, K.; Wen, C.-J.; Yoshida, S.; Watanabe, T. Bull.Chem. Soc. Jpn. 2000, 73, 2609. https://doi.org/10.1246/bcsj.73.2609
  14. Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576. https://doi.org/10.1021/jp962377q
  15. Diamant, Y.; Chen, S. G.; Melamed, O.; Zaban, A. J. Phys. Chem.B 2003, 107, 1977. https://doi.org/10.1021/jp027827v
  16. Nelson, J.; Eppler, A. M.; Ballard, I. M. J. Photochem.Photobiol. A. Chem. 2002, 148, 25. https://doi.org/10.1016/S1010-6030(02)00035-7
  17. Kambe, S.; Nakade, S.; Wada, Y.; Kitamura, T.; Yanagida, S. J. Mater. Chem. 2002, 12, 723. https://doi.org/10.1039/b105142n
  18. J. Mater. Chem. v.12 Kambe, S.;Nakade, S.;Wada, Y.;Kitamura, T.;Yanagida, S. https://doi.org/10.1039/b105142n

Cited by

  1. Nanorods Grown by a Microwave-Assisted Hydrothermal Reaction vol.115, pp.30, 2011, https://doi.org/10.1021/jp2025126
  2. Enhanced Electron Transport through Template-Derived Pore Channels in Dye-Sensitized Solar Cells vol.115, pp.37, 2011, https://doi.org/10.1021/jp204974d
  3. Transparent Conductive Oxide Less Flexible Dye-sensitized Solar Cells with Flat and Cylinder Shapes vol.1435, pp.1946-4274, 2012, https://doi.org/10.1557/opl.2012.1695
  4. Enhanced photovoltaic properties of TiO2 film prepared by polycondensation in sol reaction vol.2, pp.7, 2012, https://doi.org/10.1039/c2ra01218a
  5. Polyethylene glycol assisted direct deposition of rutile TiO2 nanocrystals on transparent conducting oxide substrate for dye-sensitized solar cell applications vol.66, pp.3, 2013, https://doi.org/10.1007/s10971-013-3020-y
  6. Films in Dye-Sensitized Solar Cells vol.15, pp.6, 2014, https://doi.org/10.1002/cphc.201301043
  7. Efficient dye-sensitized solar cells based on carbon-doped TiO2 hollow spheres and nanoparticles vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3567-1
  8. Scanning Electrochemical Cell Microscopy Platform for Ultrasensitive Photoelectrochemical Imaging vol.87, pp.8, 2015, https://doi.org/10.1021/acs.analchem.5b00288
  9. Improvement of Dye-Hydrogel Based Photovoltaics via Hydroquinone Electrolyte Mediators vol.27, pp.5, 2016, https://doi.org/10.7316/KHNES.2016.27.5.540
  10. Comparative study on effect of titania morphology for light harvesting and scattering of DSSCs: Mesoporous nanoparticles, microspheres, and dandelion-like particles vol.35, pp.6, 2016, https://doi.org/10.1002/ep.12405
  11. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy vol.8, pp.11, 2017, https://doi.org/10.1021/acs.jpclett.7b01116
  12. Photovoltaics literature survey (no. 33) vol.12, pp.7, 2004, https://doi.org/10.1002/pip.587
  13. Synthesis of Highly Soluble TiO2 Nanoparticle with Narrow Size Distribution vol.26, pp.9, 2004, https://doi.org/10.5012/bkcs.2005.26.9.1333
  14. Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model vol.88, pp.4, 2005, https://doi.org/10.1016/j.solmat.2004.11.008
  15. Effect of TiO2 Inclusion in the Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Polymer Electrolyte of Dye-Sensitized Solar Cell vol.27, pp.2, 2006, https://doi.org/10.5012/bkcs.2006.27.2.322
  16. Photoelectric Characteristics of Nanocrystalline TiO2 Film Prepared from TiO2 Colloid Sol for Dye‐Sensitized Solar Cell vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2365
  17. Synthesis and Characterization of Nanostructured Titania Films for Dye-Sensitized Solar Cells vol.30, pp.1, 2004, https://doi.org/10.5012/bkcs.2009.30.1.172
  18. Effect of donor moiety in organic sensitizer on spectral response, electrochemical and photovoltaic properties vol.159, pp.23, 2004, https://doi.org/10.1016/j.synthmet.2009.09.013
  19. Analysis of TiO2 thickness effect on characteristic of a dye-sensitized solar cell by using electrochemical impedance spectroscopy vol.10, pp.3, 2010, https://doi.org/10.1016/j.cap.2009.12.039
  20. Inkjet printed and “doctor blade” TiO2 photodetectors for DNA biosensors vol.25, pp.5, 2004, https://doi.org/10.1016/j.bios.2009.09.027
  21. Enhanced Electron Collection in TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells by an Array of Metal Micropillars on a Planar Fluorinated Tin Oxide Anode vol.114, pp.44, 2004, https://doi.org/10.1021/jp108761k
  22. Fabrication of an Efficient Light‐Scattering Functionalized Photoanode Using Periodically Aligned ZnO Hemisphere Crystals for Dye‐Sensitized Solar Cells vol.24, pp.6, 2004, https://doi.org/10.1002/adma.201103985
  23. Correlating the photovoltaic performance of alumina modified dye-sensitized solar cells with the properties of metal-free organic sensitizers vol.132, pp.2, 2012, https://doi.org/10.1016/j.matchemphys.2011.12.039
  24. Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: A conformational approach to reduce aggregation vol.92, pp.3, 2004, https://doi.org/10.1016/j.dyepig.2011.09.003
  25. High‐Aspect‐Ratio Dye‐Sensitized Solar Cells Based on Robust, Fast‐Growing TiO2 Nanotubes vol.19, pp.9, 2004, https://doi.org/10.1002/chem.201204135
  26. Tunable surface plasmons of dielectric core-metal shell particles for dye sensitized solar cells vol.3, pp.25, 2013, https://doi.org/10.1039/c3ra41714j
  27. A dye-sensitized solar cell based on a boron-doped ZnO (BZO) film with double light-scattering-layers structured photoanode vol.2, pp.15, 2014, https://doi.org/10.1039/c3ta14305h
  28. Comparison between thin-film solar cells and copper–indium–gallium–diselenide in Southeast Asia vol.9, pp.8, 2004, https://doi.org/10.1049/iet-rpg.2015.0114
  29. Influence of geometrical thickness of SnO2 based photoanode on the performance of Eosin-Y dye sensitized solar cell vol.49, pp.None, 2015, https://doi.org/10.1016/j.optmat.2015.09.015
  30. Parametric Optimization of Experimental Conditions for Dye-Sensitized Solar Cells based on Far-red Sensitive Squaraine Dye vol.704, pp.None, 2004, https://doi.org/10.1088/1742-6596/704/1/012002
  31. Parametric Optimization of Dye-Sensitized Solar Cells Using Far red Sensitizing Dye with Cobalt Electrolyte vol.924, pp.None, 2004, https://doi.org/10.1088/1742-6596/924/1/012001
  32. Dye-sensitized solar cells based on TiO2 particulate gels: Impact of gel formation mechanism on photovoltaic performance vol.338, pp.None, 2017, https://doi.org/10.1016/j.jphotochem.2017.02.006
  33. Recent Advances in the Development of Nano-Sculpted Films by Magnetron Sputtering for Energy-Related Applications vol.10, pp.10, 2004, https://doi.org/10.3390/nano10102039
  34. Performance analysis of dye-sensitized solar cells with various MgO-ZnO mixed photoanodes prepared by wet powder mixing and grinding vol.68, pp.21, 2004, https://doi.org/10.1080/09500340.2021.1987538