DOI QR코드

DOI QR Code

A Convenient Synthesis of Optically Active Unhindered Aliphatic Alcohols with High Optical Purity from Non-Racemic β-Hydroxy Sulfides

  • Published : 2004.09.20

Abstract

A general route for the synthesis of optically active unhindered aliphatic alcohols, where the steric demands between two alkyl groups adjacent to the carbinol are similar, with high enantiomeric purity has been developed by sulfoxifation of chiral ${\beta}$-hydroxy sulfides, followed by alkylation and desulfurization.

Keywords

References

  1. Mori, K. Chirality 1998, 10, 578-586. https://doi.org/10.1002/(SICI)1520-636X(1998)10:7<578::AID-CHIR5>3.0.CO;2-Z
  2. Mori, K. Eur. J. Org.Chem. 1998, 1479.
  3. Mori, K. Tetrahedron 1989, 45, 3233.
  4. Cammaerts, M.-C.; Mori, K. Physiol. Entmol. 1985, 11, 33.
  5. Brand, J. M. J. Chem. Ecol. 1985, 11, 177. https://doi.org/10.1007/BF00988200
  6. Cammaerts, M.-C.;Mori, K. Physiol. Entmol. 1987, 12, 381. https://doi.org/10.1111/j.1365-3032.1987.tb00764.x
  7. Ramirez-Lucas, P.; Malosse, C.; Ducrot, P.-H.; Lettere, M.;Zagatti, P. Bioorg. Med. Chem. 1996, 4, 323. https://doi.org/10.1016/0968-0896(96)00009-0
  8. Perez, A. L.;Campos, Y.; Chinchilla, C. M.; Oehlschlager, A. C.; Gries, G.;Gries, R.; Giblin-Davis, R. M.; Castrillo, G.; Peña, J. E.; Duncan,R. E.; Gonzalez, L. M.; Pierce, H. D., Jr.; McDonald, R.; Andrade,R. J. Chem. Ecol. 1997, 23, 869. https://doi.org/10.1023/B:JOEC.0000006377.13235.4b
  9. Mori, K. Biosci. Biotech. Biochem. 1992, 56, 1673 and referencescited therein. https://doi.org/10.1271/bbb.56.1673
  10. Bartelt, R. J.; Schaner, A. M.; Jackson, L. L. J. Chem. Ecol. 1989,15, 399. https://doi.org/10.1007/BF02027800
  11. Schaner, A. M.; Tanico-Hogan, L. D.; Jackson, L. L. J. Chem.Ecol. 1989, 15, 2577. https://doi.org/10.1007/BF01014733
  12. Daverio, P.; Zanda, M. Tetrahedron:Asymmetry 2001, 12, 2225. https://doi.org/10.1016/S0957-4166(01)00395-0
  13. Itsuno, S. In ComprehensiveAsymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.,Eds.; Springer: Berlin, 1999; Vol. 1. Chap. 6.4, pp 289-315.
  14. Corey, E. J.; Helal, C. J. Angew. Chem. Int. Ed. 1998, 37, 1986. https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<1986::AID-ANIE1986>3.0.CO;2-Z
  15. Itsuno, S. Org. React. 1998, 52, 395-576.
  16. Midland, M. M.;Morrell, L. A. In Houben-Weyl: Methods of Organic Chemistry;Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.;Georg Thieme: Stutgart, 1996; Vol. E21, pp 4049-4066; 4082-4098.
  17. Cho, B. T. Aldrichimica Acta 2002, 35, 16.
  18. Midland, M. M.; Kazubski, A.; Woodling, R. E. J. Org. Chem.1991, 56, 1068. https://doi.org/10.1021/jo00003a030
  19. Ramachandran, P. V.; Brown, H. C.; Swaminaathan, S. Tetahedron:Asymmetry 1990, 1, 433. https://doi.org/10.1016/S0957-4166(00)86346-6
  20. Imai, T.; Tamura, T.; Yamamuro, A.; Sato, T.; Wollmann, T. A.; Kennedy, R. M.; Masamune, S. J. Am. Chem. Soc. 1986, 108,7402-7404. https://doi.org/10.1021/ja00283a042
  21. Ogura, K. In Comprehensive Organic Synthesis: Selectivity,Strategy and Efficiency in Modern Organic Chemistry; Trost, B.M.; Fleming, I., Eds.; Pergamon Press: Seoul, 1991: Vol. 1, pp505-539.
  22. Metzner, P.; Thuillier, A. Sulfur Reagent in OrganicSynthesis; Academic Press: New York, 1994.
  23. Raghavan, S.;Joseph, S. C. Tetrahedron: Asymmetry 2003, 14, 101. https://doi.org/10.1016/S0957-4166(02)00782-6
  24. Walker,A. J. Tetrahedron: Asymmetry 1992, 3, 961. https://doi.org/10.1016/S0957-4166(00)86026-7
  25. Barros, D.;Carreno, M. C.; Garcia Ruano, J. L.; Maestro, M. C. TetrahedronLett. 1992, 33, 2733. https://doi.org/10.1016/S0040-4039(00)79069-1
  26. Solladie-Cavallo, A.; Suffert, J.; Adib, A.;Solladie, G. Tetrahedron Lett. 1990, 31, 6649. https://doi.org/10.1016/S0040-4039(00)97137-5
  27. Solladie, G.;Fréchou, C.; Hutt, J.; Demailly, G. Bull. Soc. Chim. Fr. 1987, 827.
  28. Solladie, G.; Fréchou, C.; Demailly, G. Tetrahedron Lett. 1986,27, 2867. https://doi.org/10.1016/S0040-4039(00)84665-1
  29. Kosugi, H.; Kitaoka, M.; Takahashi, A.; Uda, H. J.Chem. Soc. Chem. Commun. 1986, 1267.
  30. Solladie, G.; Demailly,G.; Greck, C. Tetrahedron Lett. 1985, 26, 435. https://doi.org/10.1016/S0040-4039(00)61904-4
  31. Solladie, G.;Demailly, G.; Greck, C. J. Org. Chem. 1985, 50, 1552. https://doi.org/10.1021/jo00209a044
  32. Solladie,G.; Greck, C.; Demailly, G. Tetrahedron Lett. 1982, 23, 5047. https://doi.org/10.1016/S0040-4039(00)85569-0
  33. Cho, B. T.; Choi, O. K.; Kim, D. J. Bull. Korean Chem. Soc. 2003,24, 1023. https://doi.org/10.5012/bkcs.2003.24.7.1023
  34. Cho, B. T.; Kim, D. J. Tetrahedron 2003, 59, 2457. https://doi.org/10.1016/S0040-4020(03)00254-0
  35. Cho, B. T.; Choi, O. K.; Kim, D. J. Tetrahedron: Asymmetry 2002,13, 697. https://doi.org/10.1016/S0957-4166(02)00193-3
  36. Solladie, G.; Maestro, M. C.; Rubio, A.; Pedregal, C.; Carreño, M.C.; Ruano, J. L. G. J. Org. Chem. 1991, 56, 2317. https://doi.org/10.1021/jo00007a015
  37. Crumbie, R. L.; Deol, B. S.; Nemorin, J. E.; Ridley, D. D. Aust.J. Chem. 1978, 31, 1965. https://doi.org/10.1071/CH9781965
  38. Tanikaga, R.; Hosoya, K.; Kaji, A. J. Chem. Soc. Perkin Trans.1 1988, 2397.
  39. Takano, S.; Yanase, M.; Takahakshi, M.;Ogasawara, K. Chem. Lett. 1987, 2017.
  40. Keinan, E.; Hafeli, E. K.; Steh, K. K.; Lamed, R. J. Am. Chem.Soc. 1986, 108, 162. https://doi.org/10.1021/ja00261a026
  41. Dhokte, U. P.; Pathare, P. M.; Mahindroo, V. K.; Brown, H. C. J.Org. Chem. 1998, 63, 8276. https://doi.org/10.1021/jo981040c
  42. Huang, W. S.; Hu, Q. S.; Pu, L. J. Org. Chem. 1999, 64, 7940. https://doi.org/10.1021/jo990992v
  43. Nakano, H.; Kumagai, N.; Matsuzaki, H.; Kabuto, C.; Hongo, H.Tetrahedron: Asymmetry 1997, 8, 1391. https://doi.org/10.1016/S0957-4166(97)00118-3
  44. Lindell, S. D.; Elliott, J. D.; Johnson, W. S. Tetrahedron Lett.1984, 25, 3947. https://doi.org/10.1016/0040-4039(84)80037-4

Cited by

  1. A Convenient Synthesis of Optically Active Unhindered Aliphatic Alcohols with High Optical Purity from Non-racemic ?-Hydroxy Sulfides. vol.36, pp.10, 2005, https://doi.org/10.1002/chin.200510051
  2. London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey–Bakshi–Shibata Reduction vol.133, pp.9, 2021, https://doi.org/10.1002/ange.202012760
  3. London Dispersion Interactions Rather than Steric Hindrance Determine the Enantioselectivity of the Corey–Bakshi–Shibata Reduction vol.60, pp.9, 2004, https://doi.org/10.1002/anie.202012760