DOI QR코드

DOI QR Code

Tandem Mass Spectrometric Evidence for the Involvement of a Lysine Basic Side Chain in the Coordination of Zn(II) Ion within a Zinc-bound Lysine Ternary Complex

  • Published : 2004.10.20

Abstract

We present the tandem mass spectrometry applications carried out to elucidate the coordination structure of Zn(II) bound lysine ternary complexes, $(Zn+Lys+Lys-H)^+$, which is a good model system to represent a simple (metallo)enzyme-substrate complex (ES). In particular, experimental efforts were focused on revealing the involvement of a lysine side chain ${\varepsilon}$-amino group in the coordination of $Zn^{2+}$ divalent ions. MS/MS fragmentation pattern showed that all the oxygen species within a complex fell off in the form of $H_2O$ in contrast to those of other ternary complexes containing amino acids with simple side chains (4-coordinate geometries, Figure 1a), suggesting that the lysine complexes have different coordination structures from the others. The participation of a lysine basic side chain in the coordination of Zn(II) was experimentally evidenced in MS/MS for $N{\varepsilon}$-Acetyl-L-Lys Zn(II) complexes with acetyl protection groups as well as in MS/MS for the ternary complexes with one $NH_3$ loss, $(Zn+Lys+Lys-NH_3-H)^+$. Detailed structures were predicted using ab initio calculations on $(Zn+Lys+Lys-H)^+$ isomers with 4-, 5-, and 6-coordinate structures. A zwitterionic 4-coordinate complex (Figure 7d) and a 5-coordinate structure with distorted bipyramidal geometry (Figure 7b) are found to be most plausible in terms of energy stability and compatibility with the experimental observations, respectively.

Keywords

References

  1. Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. BioinorganicChemistry; University Science Books: New York, 1994.
  2. Lippard, S. J.; Berg, J. M. Principles of Bioorganic Chemistry;University Science Books: New York, 1994.
  3. Mildvan, A. S. In The Enzymes, 3rd ed.; Boer, P. D., Ed.; AcademicPress: New York, 1970; Vol. II, p 445.
  4. Yamauchi, O.; Odani, A. J. Am. Chem. Soc. 1981, 103, 391. https://doi.org/10.1021/ja00392a025
  5. Sigel, H.; Martin, B. R. Chem. Rev. 1982, 82, 385 https://doi.org/10.1021/cr00050a003
  6. Yamauchi, O.; Odani, A. J. Am. Chem. Soc. 1985, 107, 5938. https://doi.org/10.1021/ja00307a019
  7. Sigel, H. In Advances in Solution Chemistry; Bertini, I.; Lunazzi,L.; Dei, A., Eds.; Plenum: New York, 1981; pp 149-159.
  8. Fischer, B. E.; Sigel, H. J. Am. Chem. Soc. 1980, 102, 2998. https://doi.org/10.1021/ja00529a021
  9. Malini-Balakrishnan, R.; Scheller, K. H.; Haring, U. K.; Tribolet,R.; Sigel, H. Inorg. Chem. 1985, 24, 2067. https://doi.org/10.1021/ic00207a022
  10. Hu, P.; Sorensen, C.; Gross, M. L. J. Am. Soc. Mass Spectrom.1995, 6, 1079 https://doi.org/10.1016/1044-0305(95)00549-8
  11. Oh, H.-B.; Breuker, K.; Sze, S. K.; Ying, G.; Carpenter, B.K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2002, 99, 15863. https://doi.org/10.1073/pnas.212643599
  12. Christianson, D. W. Adv. Protein Chem. 1991, 42, 281. https://doi.org/10.1016/S0065-3233(08)60538-0
  13. Berg, J. M.; Godwin, H. A. Annu. Rev. Biophys. Biomol. Struct.1997, 26, 357. https://doi.org/10.1146/annurev.biophys.26.1.357
  14. Berg, J. M.; Shi, Y. Science 2003, 300, 1081. https://doi.org/10.1126/science.300.5622.1081
  15. Ashagiri, D.; Pratt, L. R.; Paulaitis, M. E.; Rempe, S. B. J. Am.Chem. Soc. 2004, 126, 1285. https://doi.org/10.1021/ja0382967
  16. Lin, Y.-L.; Lim, C. J. Am. Chem. Soc. 2004, 126, 2602. https://doi.org/10.1021/ja038827r
  17. Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2000, 201, 307. https://doi.org/10.1016/S1387-3806(00)00226-8
  18. Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2001, 204, 267. https://doi.org/10.1016/S1387-3806(00)00358-4
  19. Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2001, 206, 45. https://doi.org/10.1016/S1387-3806(00)00383-3
  20. Rogalewicz, F.; Hoppilliard, Y.; Ohanessian, G. Int. J. MassSpectrom. 2003, 227, 439. https://doi.org/10.1016/S1387-3806(03)00103-9
  21. Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. J. Am. Chem. Soc.1985, 107, 7893. https://doi.org/10.1021/ja00312a015
  22. Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim.Acta 1991, 246, 211. https://doi.org/10.1016/S0003-2670(00)80678-9
  23. Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81,6026. https://doi.org/10.1063/1.447604
  24. Stevens, W. J.; Basch, H.; Jasien, P. Can. J. Chem. 1992, 70,612. https://doi.org/10.1139/v92-085
  25. Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quantum Chem.1976, S10, 1.
  26. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;Gordon, M. S.; Jensen, J. H.; Koseki, K.; Matsunaga, N.; Nguyen,K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J.Comput. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  27. Ge, Y.; Horn, D. M.; McLafferty, F. W. Int. J. Mass Spectrom. 2001, 210/211, 203. https://doi.org/10.1016/S1387-3806(01)00394-3
  28. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry :Principles of Structure and Reactivity, 4th ed.; Addison WesleyPub. Co.: Harlow, 1997.
  29. Reiter, A.; Adams, J.; Zhao, H. J. Am. Chem. Soc. 1994, 116,7827. https://doi.org/10.1021/ja00096a045
  30. Dongre, A. R.; Jones, J. L.; Somogyi, A.; Wysocki, V. H. J. Am.Chem. Soc. 1996, 118, 8365. https://doi.org/10.1021/ja9542193
  31. Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Am. Chem. Soc.2003, 125, 13576 https://doi.org/10.1021/ja034544n
  32. Yoon, K. H.; Kim, W.; Park, J. S.; Kim, H. J. Bull. Korean Chem.Soc. 2004, 25, 878. https://doi.org/10.5012/bkcs.2004.25.6.878

Cited by

  1. ′-tetracarboxydiethyloxamide ligand and its metal(II) complexes vol.59, pp.15, 2006, https://doi.org/10.1080/00958970600611673
  2. : A Comprehensive Picture vol.14, pp.8, 2013, https://doi.org/10.1002/cphc.201200964