DOI QR코드

DOI QR Code

3-D Hydrogen-Bonded Frameworks of Two Metal Complexes with Chelidamic Acid: Syntheses, Structures and Magnetism

  • Zhou, Guo-Wei (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Graduate School of Chinese Academy of Sciences) ;
  • Guo, Guo-Cong (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Liu, Bin (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Graduate School of Chinese Academy of Sciences) ;
  • Wang, Ming-Sheng (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,Graduate School of Chinese Academy of Sciences) ;
  • Cai, Li-Zhen (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Huang, Jin-Shun (State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences)
  • Published : 2004.05.20

Abstract

Complexes M($C_7H_2NO_5)3H_2O{\cdot}H_2O{\cdot}0.25MeCN$ (M=Ni, Co) were crystallized from the reactions of $Ni(CH_3COO)_2{\cdot}4H_2O\;or\;Co(CH_3COO)_2{\cdot}2H_2O$ with KSCN and 2,6-dicarboxy-4-hydroxypyridine (chelidamic acid). The structures were characterized by X-ray crystallography. The crystal structures of 1 and 2 show a distorted octahedral coordination geometry around the M(II) ions, which are chelated by one nitrogen atom and two oxygen atoms of the chelidamic acid and three water molecules. Complexes 1 and 2 display the hydrogen-bonded 3D framework. The magnetic behavior of 2 exhibits antiferromagnetic interaction.

Keywords

References

  1. Berl, V.; Hue, I.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2001,7, 2798-2809. https://doi.org/10.1002/1521-3765(20010702)7:13<2798::AID-CHEM2798>3.0.CO;2-L
  2. Ng, S. W. J. Organomet. Chem. 1999, 585, 12-17. https://doi.org/10.1016/S0022-328X(99)00183-7
  3. Nakatsuji, Y.; Bradshaw, J. S.; Tse, P.-K.; Arena, G.; Wilson, B.E.; Wilson, N. K.; Dalley, N. K.; Izatt, R. M. Chem. Commun.1985, 749-751.
  4. Boger, D. L.; Hong, J.; Hikota, M.; Ishida, M. J. Am. Chem.Soc.1999, 121, 2471-2477. https://doi.org/10.1021/ja983631q
  5. Fessmann, T.; Kilburn, J. D. Angew. Chem. Int. Ed. Engl. 1999,38, 1993-1996. https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<1993::AID-ANIE1993>3.0.CO;2-H
  6. Bridger, G. J.; Skerlj, R. T.; Padmanabhan, S.; Martellucci, S. A.;Henson, G. W.; Struyf, S.; Witvrouw, M.; Schols, D.; Clercq, E.De. J. Med. Chem. 1999, 42(19), 3971-3981. https://doi.org/10.1021/jm990211i
  7. Searcey, M.; MeClean, S.; Madden, B.; McGown, A. T.; Wakelin,L. P. G. Anti-Cancer Drug Des. 1998, 13, 837-855.
  8. Riegel, E. R.; Reinhard, M. C. J. Am. Chem. Soc. 1926, 48, 1334-1345. https://doi.org/10.1021/ja01416a032
  9. Bag, S. P.; Fernando, Q.; Freiser, H. Acta Crystallogr. 2000, C56,407- 411.
  10. Ng, S. W. Z. Kristallogr. 1998, 213, 421-426. https://doi.org/10.1524/zkri.1998.213.7-8.421
  11. Ng, S. W. J. Organomet. Chem. 1999, 585, 12-17. https://doi.org/10.1016/S0022-328X(99)00183-7
  12. Riegel, R. J. Am. Chem. Soc. 1926, 48, 1334-1345. https://doi.org/10.1021/ja01416a032
  13. Hall, A. K.; Harrowfield, J. M.; Skelton, B. W.; White, A. H. ActaCrystallogr., Sect. C (Cr. Str. Comm.) 2000, 56, 448-450. https://doi.org/10.1107/S0108270199015620
  14. Cline, S. J.; Skallesoe; Pedersen, E.; Hodgson, D. J. Inorg. Chem.1979, 18, 796-801. https://doi.org/10.1021/ic50193a052
  15. Yang, L.; Cour, A. L.; Anderson, O. P.; Crans, D. C. Inorg. Chem.2002, 24, 6322-6331.
  16. Thich, J. A.; Ou, C. C.; Powers, D.; Vasiliou, B.; Mastropaolo, D.;Potenza, J. A.; Schugar, H. J. J. Am. Chem. Soc. 1976, 98, 1425-1433. https://doi.org/10.1021/ja00422a024
  17. Zhou, G.-W.; Guo, G.-C.; Liu, B.; Wang, M.-S.; Guo, G.-H.;Cai, L.-Z.; Huang, J.-S. Acta Crystallogr., Sect. E 2003, 59, m926-m928. https://doi.org/10.1107/S1600536803019846
  18. SHELXTL Version 5.0; Siemens Industrial Automation Inc.,Analytical Instrumentation: Madison, WI, 1995.
  19. Sutton, L. E. Chem. Soc., Special Publ. 1965, 18, S16s-S21s.
  20. Gaspar, A. B.; Muòoz, C. M.; Niel, V.; Real, J. A. Inorg. Chem.2001, 40, 9-10. https://doi.org/10.1021/ic000788m
  21. Carlin, R. L. Magnetochemistry; Springer-Verlag: Berlin, 1986.

Cited by

  1. Syntheses, structures, and optical properties of two cadmium complexes with chelidamic acid vol.63, pp.1, 2010, https://doi.org/10.1080/00958970903288302
  2. A Comparison of the Self Assembled Frameworks of Three Cobalt(II) Coordination Compounds Bearing Dipicolinic Acid and Chelidamic Acid Ligands vol.43, pp.10, 2013, https://doi.org/10.1007/s10870-013-0437-7
  3. The Zinc(II) Coordination Polymer with Mixed-Ligand of 4-Hydroxypyridine-2,6-dicarbolic Acid and Benzene-1,2,4,5-tetracarboxylic Acid in the Presence of Piperazine as a Counter Ion: Synthesis, Crystal Structure and Solution Study vol.45, pp.3, 2015, https://doi.org/10.1007/s10870-015-0565-3
  4. Self-assembling construction of a novel nanoscale heptacobalt complex with an S-shaped folding vol.10, pp.11, 2008, https://doi.org/10.1039/b802854k
  5. Tetra-μ-aqua-octaaquabis(μ-4-chloropyridine-2,6-dicarboxylato)bis(4-chloropyridine-2,6-dicarboxylato)tricobalt(II)disodium(I) bis[triaquabis(4-chloropyridine-2,6-dicarboxylato)cobalt(II)] hexahydrate vol.64, pp.1, 2008, https://doi.org/10.1107/S1600536807067141
  6. A novel heterometal–organic coordination polymer with chelidamic acid: nonlinear optical and magnetic properties, vol.11, pp.6, 2009, https://doi.org/10.1039/b900727j
  7. (MCu, Ag): Theoretical Analysis vol.27, pp.11, 2009, https://doi.org/10.1002/cjoc.200990354
  8. Synthesis, crystal structure and optical properties of a novel 1D coordination polymer [Zn3(C7H2NO5)2.8(H2O)]n vol.921, pp.1, 2004, https://doi.org/10.1016/j.molstruc.2009.01.016
  9. Synthesis, crystal and band structures, and optical and magnetic properties of a 1D copper coordination polymer with chelidamic acid ligand vol.362, pp.13, 2004, https://doi.org/10.1016/j.ica.2009.06.040
  10. Synthesis, characterization, spectroscopic, crystal structures and solution studies of two coordination compounds of zinc(II) and iron(III) based on chelidamic acid and acridine vol.392, pp.None, 2012, https://doi.org/10.1016/j.ica.2012.03.034
  11. A new supramolecular coordination compound of Mg(II) with chelidamic acid: Synthesis, spectroscopic, crystal structures, and thermal analysis vol.47, pp.4, 2004, https://doi.org/10.1080/15533174.2016.1186077
  12. Synthesis, characterization, crystal structure, thermal analysis of a new co-crystal supramolecular dinuclear zinc (II) complex containing chelidamate ligand vol.48, pp.3, 2004, https://doi.org/10.1080/24701556.2018.1503683
  13. Synthesis, Characterization, Crystal Structure, and Supramolecular Interactions of a New Proton Transfer Compound: 2-Aminopyrazinium 4-hydroxypyridinium-2,6-dicarboxylate vol.93, pp.10, 2019, https://doi.org/10.1134/s0036024419100066