DOI QR코드

DOI QR Code

Spectroscopic Studies on Interaction of Protoberberines with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2

  • Published : 2004.10.20

Abstract

The topoisomerase II poisoning effect of certain protoberberine alkaloids is associated with anti-cancer activity. Structure-activity relationships of protoberberine analogues substituted on the ring protons reveal that substitution at the C19 position is an important determinant of biological activity. In this study, the effects of substituent modification at the C19 position on the interaction of protoberberines with DNA are determined using UV and NMR spectroscopy. The line broadening effect on aliphatic resonances, chemical shift changes of the imino protons of HP14 upon berberine and berberrubine binding to HP14, and the rate of the exchange process between protoberberine analogs bound indicate that berberrubine binds HP14 more specifically than berberine. In addition, the free HP14 is altered by the substituent at the 19-position. UV spectra of berberrubine have shown a hypochromic effect together with a slight red shift, which are usually regarded as characteristics of DNA intercalation. These results are consistent with our previous report that the berberrubine is partially intercalated with HP14 with molar ratio 1 : 1, whereas a non-specific interaction is predominant between the berberine and HP14.

Keywords

References

  1. Wang, J. C. Annu. Rev. Biochem. 1996, 65, 635. https://doi.org/10.1146/annurev.bi.65.070196.003223
  2. Watt, P. M.; Hickson, I. D. Biochem. J. 1994, 303, 681. https://doi.org/10.1042/bj3030681
  3. Berger, J. M.; Gamblin, S. J.; Harrison, S. C.; Wang, J. C. Nature1996, 379, 225. https://doi.org/10.1038/379225a0
  4. Roca, J.; Wang, J. C. Cell 1994, 77, 609. https://doi.org/10.1016/0092-8674(94)90222-4
  5. Chen, A. Y.; Liu, L. F. Annu. Rev. Pharmacol. Toxicol. 1994, 34,191. https://doi.org/10.1146/annurev.pa.34.040194.001203
  6. Osheroff, N. Pharmacol. Ther. 1989, 41, 223. https://doi.org/10.1016/0163-7258(89)90108-3
  7. Corbett, A. H.; Osheroff, N. Chem. Res. Toxicol. 1993, 6, 585. https://doi.org/10.1021/tx00035a001
  8. Froelich-Ammon, S. J.; Osheroff, N. J. Biol. Chem. 1995, 270, 21429. https://doi.org/10.1074/jbc.270.37.21429
  9. Pommier, Y.; Leteurtre, F.; Fesen, M. R.; Fujimori, A.; Bertrand,R.; Solary, E.; Kohlhagen, G.; Kohn, K. W. Cancer in Vest. 1994,12, 530.
  10. Sobulo, O. M.; Borrow, J.; Tomek, R.; Reshmi, S.; Harden,A.; Schlegelberger, B.; Housman, D.; Doggett, N. A.; Rowley, J.D.; Zeleznik-Le, N. J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,8732. https://doi.org/10.1073/pnas.94.16.8732
  11. Spath, E.; Polgar, N. Monatsh. Chem. 1929, 52, 117. https://doi.org/10.1007/BF02715980
  12. Ikekawa, T.; Ikeda, Y. J. Pharmacobio-Dyn. 1982, 5, 469. https://doi.org/10.1248/bpb1978.5.469
  13. Park, H.-S.; Kim, E. H.; Sung, Y. H.; Kang, M. R.; Chung, I. K.;Cheong, C.; Lee, W. Bull. Korean Chem. Soc. 2004, 24(4), 539-544.
  14. Hwang, T. L.; Shaka, A. J. J. Magn. Reson. A 1995, 112, 275. https://doi.org/10.1006/jmra.1995.1047
  15. Qian, Y. Q.; Otting, G.; Billeter, M.; Muller, M.; Gehring, W.;Wüthrich, K. J. Mol. Biol. 1993, 234, 1070. https://doi.org/10.1006/jmbi.1993.1660
  16. Kay, L. E.; Muhandiram, D. R.; Farrow, N. A.; Aubin, Y.; Forman-Kay, J. D. Biochemistry 1996, 35, 361. https://doi.org/10.1021/bi9522312
  17. Brodsky, A. S.; Williamson, J. R. J. Mol. Biol. 1997, 267, 624. https://doi.org/10.1006/jmbi.1996.0879
  18. Foster, M. P.; Wuttke, D. S.; Case, D. A.; Gottesfeld, J. M.;Wright, P. E. Nat. Struct. Biol. 1997, 4, 605. https://doi.org/10.1038/nsb0897-605
  19. Monnot, M.; Mauffret, O.; Simon, V.; Lescot, E.; Psaume, B.;Saucier, J. M.; Charra, M.; Belehradek, J. Jr.; Fermandjian, S. J.Biol. Chem. 1991, 266, 1820.
  20. Nelson, J. W.; Tinoco, I., Jr Biochemistry 1985, 24, 6416. https://doi.org/10.1021/bi00344a016
  21. Hirata, K.; Araya, J.; Nakaike, S.; Kitamura, K.; Ishida, T. Chem.Pharm. Bull. 2001, 49, 44. https://doi.org/10.1248/cpb.49.44
  22. Fukui, K.; Tanaka, K. Nucleic Acids Res. 1996, 24, 3962. https://doi.org/10.1093/nar/24.20.3962
  23. Nastasi, M.; Morris, J. M.; Rayner, D. M.; Seligy V. L.; Szabo,A.G.;Williams, D. F.; Williams, R. E.; Yip, R. W. J. Am. Chem.Soc. 1976, 98, 3979. https://doi.org/10.1021/ja00429a039
  24. Long, E. C.; Barton, J. K. Acc. Chem. Res. 1990, 23, 273. https://doi.org/10.1021/ar00177a002
  25. Li, W. Y.; Lu, H.; Xu, C. X.; Zhang, J. B.; Lu, Z. H. SpectroscopyLetters 1998, 31, 1287. https://doi.org/10.1080/00387019808003303
  26. Marky, L. A.; Breslauer, K. J. Biopolymers 1987, 26, 1601. https://doi.org/10.1002/bip.360260911

Cited by

  1. Structural studies on ligand–DNA systems: A robust approach in drug design vol.37, pp.3, 2012, https://doi.org/10.1007/s12038-012-9212-8
  2. DNA-Binding Affinities and Sequence Specificities of Protoberberine Alkaloids and Their Demethylated Derivatives: A Comparative Study vol.4, pp.2, 2007, https://doi.org/10.1002/cbdv.200790019
  3. Solution Structure Determination of Four Diploptera punctata Allatostatins by NMR Spectroscopy and Molecular Modeling vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.845
  4. Interaction study between double-stranded DNA and berberine using capillary zone electrophoresis vol.833, pp.2, 2004, https://doi.org/10.1016/j.jchromb.2006.01.028
  5. 6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid attenuates heptatocellular carcinoma in rats with NMR-based metabolic perturbations vol.3, pp.3, 2017, https://doi.org/10.4155/fsoa-2017-0008