References
- Henk, H. G.; Jaap, B.; Gerard, V. K. Chemical Society Reviews2002, 31(6), 357-364. https://doi.org/10.1039/b205238e
- Hogan, G. R. Bulletin of Environmental Contamination andToxicology 2000, 64(4), 606-610. https://doi.org/10.1007/s001280000046
- Agnihotri, N.; Dass, R.; Mehta, J. R. Chemical Analysis (Warsaw)44(4), 418-425.
- Costa, A. C. S.; Teixeira, L. S. Q.; Jaeger, H. V.; Ferreira, S. L. C.Mikrochimica Acta 1998, 130, 41-45. https://doi.org/10.1007/BF01254589
- Yang, G. Y.; Yin, J. Y.; Liu, M.; Hu, Q. H. Chinese Journal ofAnalytical Chemistry (Fenxi Huaxue) 1999, 27(1), 10-13.
- Starczewska, B. Journal of Trace and Microprobe Techniques2002, 20(3), 377-384. https://doi.org/10.1081/TMA-120006683
- Melwanki, M. B.; Seetharamappa, J.; Masti, S. AnalyticalSciences 2001, 17(8), 979-982. https://doi.org/10.2116/analsci.17.979
- Zhou, S. P.; Yang, G. Y.; Yin, J. Y.; Wu, C. H. Chinese Journal ofAnalytical Chemistry (Fenxi Huaxue) 2000, 28(7), 890-892.
- Safavi, A.; Nezhad, M. R. Analytica Chimica Acta 2002, 9(1/2),283-289.
- Gavazov, K.; Simeonova, Z. H.; Alexandrov, A. Talanta 2000,52(3), 539-544. https://doi.org/10.1016/S0039-9140(00)00405-7
- Miura, J.; Hoshion, H.; Yotsuyanagi, T. Analytical Chimica Acta1990, 233, 121-127. https://doi.org/10.1016/S0003-2670(00)83467-4
- Ishizuki, T.; Tsuzuki, M.; Yuchi, A.; Ozawa, T.; Wada, H.;Nakagawa, G. Analytica Chimica Acta 1993, 272, 161-165. https://doi.org/10.1016/0003-2670(93)80388-2
- Yang, G. Y.; Hu, Q. F.; Yang, J. H.; Huang, Z. J.; Yin, J. Y.Analytical. Sciences 2003, 19(2), 299-303. https://doi.org/10.2116/analsci.19.299
- Simgh, I.; Poonam, M. Talanta 1984, 31, 109-114. https://doi.org/10.1016/0039-9140(84)80026-0
- Hu, Q. H.; Yang, G. Y.; Huang, Z. J.; Yin, J. Y. Talanta 2002, 58,467-473. https://doi.org/10.1016/S0039-9140(02)00316-8
- Hu, Q. F.; Yang, G. Y.; Yang, J. H.; Yin, J. Y. Journal ofEnvironment Monitoring 2002, 4(6), 956-959. https://doi.org/10.1039/b204874b
Cited by
- A Rapid, Simple, and Sensitive Spectrophotometric Determination of Traces of Vanadium (V) in Foodstuffs, Alloy Steels, and Pharmaceutical, Water, Soil, and Urine Samples vol.41, pp.6, 2008, https://doi.org/10.1080/00032710801978517
- A spectrophotometric assay method for vanadium in biological and environmental samples using 2,4-dinitrophenylhydrazine with imipramine hydrochloride vol.184, pp.1, 2012, https://doi.org/10.1007/s10661-011-1957-2
- Determination of vanadium (V) employing a new combined single drop micro-extraction and diffuse reflectance Fourier transform infrared spectroscopy technique vol.92, pp.1, 2012, https://doi.org/10.1080/03067310903410998
- Determination and Quantification of Vanadium(V) in Environmental Samples Using Chemically Modified Chitosan Sorbent vol.04, pp.02, 2014, https://doi.org/10.4236/jeas.2014.42006
- Determination of vanadium (V) in various environmental and biological samples using spectrophotometry vol.130, pp.1-3, 2007, https://doi.org/10.1007/s10661-007-9663-9
- Determination of trace amounts of vanadium by UV–vis spectrophotometric after separation and preconcentration with modified natural clinoptilolite as a new sorbent vol.75, pp.5, 2008, https://doi.org/10.1016/j.talanta.2008.01.045
- A sensitive method for determining total vanadium in water samples using colorimetric-solid-phase extraction-fiber optic reflectance spectroscopy vol.172, pp.2, 2004, https://doi.org/10.1016/j.jhazmat.2009.07.136
- A Highly Sensitive and Selective Spectrofluorimetric Method for the Determination of Vanadium at Pico-Trace Levels in Some Real, Environmental, Biological, Soil and Food Samples Using 2-(α-Pyrid vol.10, pp.11, 2004, https://doi.org/10.4236/ajac.2019.1011038