References
- Carasek, E.; Tonjes, J. W.; Scharf, M. Talanta 2002, 56, 185. https://doi.org/10.1016/S0039-9140(01)00556-2
- Nohut, S.; Karaböcek, S.; Güner, S.; Gok, Y. J. Phamaceut.Biomed. 1999, 20, 309. https://doi.org/10.1016/S0731-7085(99)00045-X
- Bakircioglu, Y.; Segade, S. R.; Yourd, E. R.; Tyson, J. F. Anal.Chim. Acta 2003, 485, 9. https://doi.org/10.1016/S0003-2670(03)00348-9
- Matoso, E.; Kubota, L. T.; Cadore, S. Talanta 2003, 60, 1105. https://doi.org/10.1016/S0039-9140(03)00215-7
- Luoma, S. N. Sci. Total Environ. 1983, 28, 1. https://doi.org/10.1016/S0048-9697(83)80004-7
- Parmeggiani, L. Encyclopaedia of Occupational Health andSafety, 3rd.; International Labor Organization: Geneva, 1983; Vol. 1.
- Forstner, U. Polution in the Aquatic Environment; Springer Verlag:Berlin, 1983.
- Manzoori, J. L.; Karim-Nezhad, G. Anal. Chim. Acta 2003, 484,155. https://doi.org/10.1016/S0003-2670(03)00343-X
- Manzoori, J. L.; Bavili-Tabrizi, A. Anal. Chim. Acta 2002, 470,215. https://doi.org/10.1016/S0003-2670(02)00765-1
- Esther Fernardez Laespada, M.; Peraz Pavon, J. L.; Cordero, B.M. Analyst 1993, 118, 209. https://doi.org/10.1039/an9931800209
- Shemirani, F.; Dehghan-Abkenar, Sh.; Mirroshandel, A. A.;Salavati Niasavi, M. S.; Rahnama Kozani, R. Anal. Sci. 2003, 19,1. https://doi.org/10.2116/analscix.19.x1
- Shemirani, F.; Dehghan-Abkenar, Sh.; Rahnama-Kozani, R.;Salavati Niasavi, M. S.; Mirroshandel, A. A. Can. J. Anal. Sci.Spectro. 2004, 49, 1.
- Paleologos, G. D. L.; Tzouwara-Karaynni, S. M.; Karayanis, M.T. Anal. Chim. Acta 2002, 458, 241. https://doi.org/10.1016/S0003-2670(01)01579-3
- Paleologos, E. K.; Stalikas, C. D.; Karayannis, M. I. Analyst 2001,126, 389. https://doi.org/10.1039/b009521b
- Silva, M. F.; Fernandez, L.; Olsina, R. A.; Stacchiola, D. Anal.Chim. Acta 1997, 342, 229. https://doi.org/10.1016/S0003-2670(96)00603-4
- Manzoori, J. L.; Bavili-Tabrizi, A. Microchem. J. 2002, 72, 1. https://doi.org/10.1016/S0026-265X(01)00113-8
- Mesquita da silva, M. A.; Azzolin Frescura, V. L.; Nome Aguilera,F. J.; Curtius, A. J. J. Anal. At. Spectrom. 1998, 13, 1369. https://doi.org/10.1039/a806309e
- Rosen, M. J. Surfactants and Interfacial Phenomena; Wiley: NewYork, 1987.
- Corti, M.; Minero, C.; Degiorgio, V. J. Phys. Chem. 1984, 88, 309. https://doi.org/10.1021/j150646a029
- Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 450, 215. https://doi.org/10.1016/S0003-2670(01)01367-8
- Kulichenko, S. A.; Doroschuk, V. O.; Lelyushok, S. O. Talanta2003, 59, 767. https://doi.org/10.1016/S0039-9140(02)00617-3
- Soylak, M.; Divriki, U.; Elci, L.; Dogan, M. Talanta 2002, 56,565. https://doi.org/10.1016/S0039-9140(01)00575-6
- Non-ionic Surfactant; Schick, M. J., Ed.; Marcel Dekker: NewYork, 1987.
- Dean, J. A.; Rains, T. C. Flame Emission and Atomic AbsorptionSpectrometry; Marcel Dekker: New York, 1975.
- Cerrato Oliveros, M. C.; Jimenez de Blas, O.; Perez Pavon, J. L.;Moreno cordero, B. J. Anal. At. Spectrom. 1998, 13, 547. https://doi.org/10.1039/a801635f
Cited by
- A Green Preconcentration Method for Determination of Cobalt and Lead in Fresh Surface and Waste Water Samples Prior to Flame Atomic Absorption Spectrometry vol.2012, pp.2090-8873, 2012, https://doi.org/10.1155/2012/713862
- Simultaneous pre-concentration of Pb and Sn in food samples and determination by atomic absorption spectrometry vol.236, pp.4, 2013, https://doi.org/10.1007/s00217-013-1929-6
- Removal of Copper(II) from a Concentrated Sulphate Medium by Cloud Point Extraction Using an N,N′-Bis(salicylaldehyde)Ethylenediimine Di-Schiff Base Chelating Ligand vol.17, pp.1, 2014, https://doi.org/10.1007/s11743-013-1501-1
- A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS pp.1436-5073, 2017, https://doi.org/10.1007/s00604-017-2384-z
- Experimental design for the optimization of coacervative extraction of brilliant green in water samples using anionic surfactant vol.8, pp.4, 2018, https://doi.org/10.1007/s13201-018-0757-z
- Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction vol.157, pp.3-4, 2007, https://doi.org/10.1007/s00604-006-0652-4
- Cloud point extraction for the determination of trace copper in water samples by flame atomic absorption spectrometry vol.162, pp.1-2, 2008, https://doi.org/10.1007/s00604-007-0904-y
- Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction vol.67, pp.5, 2004, https://doi.org/10.1016/j.talanta.2005.04.029
- Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations vol.145, pp.3, 2007, https://doi.org/10.1016/j.jhazmat.2006.11.040
- Development of a cloud-point extraction method for copper and nickel determination in food samples vol.159, pp.2, 2004, https://doi.org/10.1016/j.jhazmat.2008.02.011
- Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview vol.394, pp.3, 2004, https://doi.org/10.1007/s00216-009-2660-9
- Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: A multivariate study vol.192, pp.3, 2011, https://doi.org/10.1016/j.jhazmat.2011.06.017
- A novel fluorescent sensor based on electrosynthesized benzene sulfonic acid‐doped polypyrrole for determination of Pb(II) and Cu(II) vol.34, pp.5, 2004, https://doi.org/10.1002/bio.3626
- Application of Ultrasound-assisted Cloud-point Extraction and Spectrophotometry for Preconcentration and Determination of Trace Amounts of Copper(II) in Beverages vol.74, pp.12, 2004, https://doi.org/10.1134/s1061934819120128
- Extraction of Lead through Functionalized Carbon Nanotubes and Estimation of the Measurement Uncertainty vol.53, pp.10, 2004, https://doi.org/10.1080/00032719.2020.1711521