DOI QR코드

DOI QR Code

Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) Study of Mutagen X

  • Bang, Soo-Jin (Life Science Division, Korea Institute of Science and Technology) ;
  • Cho, Seung-Joo (Life Science Division, Korea Institute of Science and Technology)
  • Published : 2004.10.20

Abstract

Mutagen X (MX) exists in our drinking water as the bi-products of chlorine disinfection. Being one of the most potent mutagen, it attracted much attention from many researchers. MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) methods. As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. We tried to collect all the data available from the literature. With both CoMFA and CoMSIA various combinations of physiochemical parameters were systematically studied to produce reasonable 3-dimensional models. The best model for CoMFA gave $q^2$ = 0.90 and $r^2$ = 0.97, while for CoMSIA $q^2$ = 0.85 and $r^2$ = 0.94. So the models seem to be reasonable. Unlike previous result of CoMFA, in our case steric parameter alone gave the best statistics. Although the steric contribution was found to be the most important in both CoMFA and CoMSIA, steric parameter along with electrostatic parameter produced slightly better model in CoMSIA. Overall, steric contribution is clearly the most important single factor. However, when we compare chlorine and bromine substitution, chlorine substitution can be more mutagenic. This indicates that other factors such as electrostatic effect also influence the mutagenicity. From the contour maps, steric contribution seems to be focused on rather small area near C6 substituent of the furanone ring, rather than C3 substituent. Therefore the locality of steric contribution can play a significant role in mutagenicity.

Keywords

References

  1. Moudgal, C. J.; Lipscomb, J. C.; Bruce, R. M. Toxicology 2000,147, 109-131. https://doi.org/10.1016/S0300-483X(00)00188-8
  2. Junhe, L.; Huixian, Z.; Chengyong, Y.; Zirui, Y.; Jinqi, Z. Wat.Res. 2002, 36, 970-974. https://doi.org/10.1016/S0043-1354(01)00290-1
  3. Meier, J. R.; Blazak, W. F.; Knohl, R.B. Environ. Mol. Mut. 1987, 10, 411-424. https://doi.org/10.1002/em.2850100410
  4. Halonen, I.; Tarhanen, J.; Ollikainen, S.; Ruokojarvi, P.; Tuppurainen, K.;Ruuskanen, J. Chemosphere 1994, 28, 2129-2138. https://doi.org/10.1016/0045-6535(94)90181-3
  5. Maron, D. M.; Ames, B. N. Mut. Res. 1983, 113, 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  6. Tikkanen, L.; Kronberg, L. Mut. Res. 1990, 240, 109-116. https://doi.org/10.1016/0165-1218(90)90014-S
  7. Kronberg, L.; Franzen, R. Environ. Sci. Technol. 1993, 27, 1811-1818. https://doi.org/10.1021/es00046a008
  8. Matsumura, H.; Watanabe, M.; Matsumoto, K.; Ohta, T.J. Tox. Environ. Health 1994, 43, 65-72. https://doi.org/10.1080/15287399409531904
  9. LaLonde, R. T.; Xie,S.; Chamulitrat, W.; Mason, R. P. Chem. Res. Toxicol. 1994, 7,482-486. https://doi.org/10.1021/tx00040a002
  10. Munter, T.; Curieux, F. L.; Sjoholm, R.; Kronberg, L.Chem. Res. Toxicol. 1998, 11, 226-233. https://doi.org/10.1021/tx970195x
  11. Miettinen, I.; Martikinen, P.; Vartiainen, T.; Lotjonen, S.Chemosphere 1993, 27, 1707-1718. https://doi.org/10.1016/0045-6535(93)90151-T
  12. Munter, T.; Curieux, F. L.; Sjoholm, R.; Kronberg, L. Chem.Res. Toxicol. 1999, 12, 40-52.
  13. Munter, T.; Curieux, F. L.;Sjoholm, R.; Kronberg, L. Chem. Res. Toxicol. 1998, 11, 226-233. https://doi.org/10.1021/tx970195x
  14. Meier, J. R.; Monarca, S.; Patterson, K. S.; Villarini, M.; Daniel, F.B.; Moretti, M.; Pasquini, R. Toxicology 1996, 110, 59-70. https://doi.org/10.1016/0300-483X(96)03336-7
  15. Marsteinstredet, U.; Wiger, R.; Brunborg, G.; Homgslo, J. K.;Holme, J. A. Chemico-Biological Interactions 1997, 106, 89-107. https://doi.org/10.1016/S0009-2797(97)00053-7
  16. Mowry, D. T. J. Am. Chem. Soc. 1950, 72, 2535-2537. https://doi.org/10.1021/ja01162a056
  17. Nawrocki, J.; Andrzejewski, P.; Zelen, H.; Wasowicz, E. Wat. Res.2001, 35, 1891-1896. https://doi.org/10.1016/S0043-1354(00)00456-5
  18. Marsteinstredet, U.; Brunborg, G.; Bjoras, M.; Soderlund, E.;Seeberg, E.; Kronberg, L.; Holme, J. A. Mut. Res. 1997, 390, 171-178. https://doi.org/10.1016/S0165-1218(97)00016-5
  19. Tikkanen, L.; Kronberg, L. Mut. Res. 1990, 240, 109-116. https://doi.org/10.1016/0165-1218(90)90014-S
  20. Kronberg, L.; Franzen, R. Environ. Sci. Technol. 1993, 27,1811-1818. https://doi.org/10.1021/es00046a008
  21. Franzen, R.; Goto, S.; Tanabe, K.; Morita, M. Mut.Res. 1998, 417, 31-37. https://doi.org/10.1016/S1383-5718(98)00092-8
  22. Ishiguro, Y.; LaLonde, T.; Dence, C. W.Environ. Tox. Chem. 1987, 6, 935-946. https://doi.org/10.1002/etc.5620061205
  23. Ishiguro, Y.; Santodonato, J.; Neal, M. W. Environ. Mol. Mutagenesis 1988, 11, 225-234. https://doi.org/10.1002/em.2850110208
  24. LaLonde, R. T.; Bu, L.; Henwood, A.; Fiumano, J.;Zhang, L. Chem. Res. Toxicol. 1997, 10, 1427-1436. https://doi.org/10.1021/tx9701283
  25. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Bu, L. Chem. Res. Toxicol. 1991,4, 540-545. https://doi.org/10.1021/tx00023a009
  26. LaLonde, R. T.; Xie, S. Chem. Res. Toxicol. 1992,5, 618-624. https://doi.org/10.1021/tx00029a005
  27. Kronberg, L.; Christman, R. F. Sci. Total Environ.1989, 81, 219-230. https://doi.org/10.1016/0048-9697(89)90128-9
  28. Kronberg, L.; Christman, R. F.; Singh, R.;Ball, L. M. Environ. Sci. Technol. 1991, 25, 99-104. https://doi.org/10.1021/es00013a009
  29. LaLonde, R. T.; Xie, S.; Bu, L. Environ. Mol. Mut. 1993, 22, 181-187. https://doi.org/10.1002/em.2850220311
  30. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Dence, C. W. Chem.Res. Toxicol. 1991, 4, 35-40. https://doi.org/10.1021/tx00019a005
  31. Meier, J. R.; Knohl, R. B.;Coleman, W. E.; Ringhand, H. P.; Munch, J. W.; Kaylor, W. H.;Stereicher, R. P.; Kopfler, F. C. Mut. Res. 1987, 189, 363-373. https://doi.org/10.1016/0165-1218(87)90044-9
  32. LaLonde, R. T.; Lee, H. R. Chem. Res. Toxicol. 1994, 7, 779-783. https://doi.org/10.1021/tx00042a010
  33. LaLonde, R. T.; Cook, G. P.; Perakyla, H.; Dence, C. W.;Babish, J. G. Environ. Mol. Mut. 1991, 17, 40-48. https://doi.org/10.1002/em.2850170107
  34. Cho, S. J. Bull. Korean Chem. Soc. 2002, 23, 929-930. https://doi.org/10.5012/bkcs.2002.23.7.929
  35. Cho, S. J. Bull. Korean Chem. Soc. 2003, 24, 731-732. https://doi.org/10.5012/bkcs.2003.24.6.731
  36. Tuppurainen, K.; Lotjonen, S.; Laatikainen, R.; Varitiainen, T. Mut. Res. 1992, 181-188.
  37. Kronberg, L; Christman, R. F. Sci. Total Environ. 1989, 81,219. https://doi.org/10.1016/0048-9697(89)90128-9
  38. Poso, A.; Tuppurainen, K.; Gynther, J. J. Mol. Struct.(THEOCHEM) 1994, 304, 255-260. https://doi.org/10.1016/0166-1280(94)80022-7
  39. Cramer, R. D.; Petterson, D. E.; Bunce, J. D. J. Am. Chem. Soc.1988, 110, 5959-5967. https://doi.org/10.1021/ja00226a005
  40. Klebe, G.; Abraham, U. J. Comput.-Aided Mol. Design 1999, 13,1-10. https://doi.org/10.1023/A:1008047919606
  41. QSAR and Advanced CoMFA manual.

Cited by

  1. Large variation in electrostatic contours upon addition of steric parameters and the effect of charge calculation schemes in CoMFA on mutagenicity of MX analogues vol.38, pp.11, 2012, https://doi.org/10.1080/08927022.2012.659182
  2. 3D-QSAR Study for Checkpoint Kinase 2 Inhibitors through Pharmacophore Hypotheses pp.20100221, 2013, https://doi.org/10.7763/IJCEA.2013.V4.263
  3. Quantitative Structure Tribo-Ability Relationship for Organic Compounds as Lubricant Base Oils Using CoMFA and CoMSIA vol.138, pp.3, 2016, https://doi.org/10.1115/1.4033191
  4. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of thiazolone derivatives as hepatitis C virus NS5B polymerase allosteric inhibitors vol.22, pp.10, 2008, https://doi.org/10.1007/s10822-008-9230-7
  5. Effect of steric molecular field settings on CoMFA predictivity vol.14, pp.1, 2008, https://doi.org/10.1007/s00894-007-0252-1
  6. Elucidation of binding mode and three dimensional quantitative structure–activity relationship studies of a novel series of protein kinase B/Akt inhibitors vol.15, pp.2, 2009, https://doi.org/10.1007/s00894-008-0416-7
  7. The Effect of Molecular Fields, Lattice Spacing and Analysis Options on CoMFA Predictive Ability vol.28, pp.6-7, 2009, https://doi.org/10.1002/qsar.200860128
  8. 3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE)Inhibitors: a Molecular Design in Hypertensive Agents vol.26, pp.6, 2004, https://doi.org/10.5012/bkcs.2005.26.6.952
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. Partial Charge Calculation Method Affects CoMFA QSAR Prediction Accuracy vol.49, pp.3, 2004, https://doi.org/10.1021/ci800390m
  11. Comparison Data Sets for Benchmarking QSAR Methodologies in Lead Optimization vol.49, pp.7, 2009, https://doi.org/10.1021/ci900117m
  12. Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening vol.2014, pp.None, 2004, https://doi.org/10.1155/2014/359494
  13. Predicting the cytotoxicity of disinfection by-products to Chinese hamster ovary by using linear quantitative structure-activity relationship models vol.26, pp.16, 2004, https://doi.org/10.1007/s11356-019-04947-z
  14. www.3d-qsar.com: a web portal that brings 3-D QSAR to all electronic devices-the Py-CoMFA web application as tool to build models from pre-aligned datasets vol.33, pp.9, 2019, https://doi.org/10.1007/s10822-019-00231-x
  15. Molecular Modeling Study of c-KIT/PDGFRα Dual Inhibitors for the Treatment of Gastrointestinal Stromal Tumors vol.21, pp.21, 2004, https://doi.org/10.3390/ijms21218232
  16. 3D-QSAR, Docking and Molecular Dynamics Simulation Study of C-Glycosylflavones as GSK-3β Inhibitors vol.13, pp.4, 2004, https://doi.org/10.13160/ricns.2020.13.4.170
  17. Designing of the N-ethyl-4-(pyridin-4-yl)benzamide based potent ROCK1 inhibitors using docking, molecular dynamics, and 3D-QSAR vol.9, pp.None, 2004, https://doi.org/10.7717/peerj.11951
  18. Molecular Modelling Studies on Pyrazole Derivatives for the Design of Potent Rearranged during Transfection Kinase Inhibitors vol.26, pp.3, 2004, https://doi.org/10.3390/molecules26030691
  19. Computational Modeling of Novel Phosphoinositol‐3‐kinase γ Inhibitors Using Molecular Docking, Molecular Dynamics, and 3D‐QSAR vol.42, pp.8, 2004, https://doi.org/10.1002/bkcs.12305
  20. Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3 vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212511