DOI QR코드

DOI QR Code

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J. (Department of Chemistry Education, Chonnam National University) ;
  • Yoon, S.H. (Department of Chemistry Education, Chonnam National University) ;
  • Park, K.G. (Ivy Class Student, Korea Minjok Leadership Academy) ;
  • Kim, Y.H. (Department of Chemistry and Center for Chemical Dynamics, Inha University)
  • Published : 2004.08.20

Abstract

We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Keywords

References

  1. Shustorovich, E. Surf. Sci. Rep. 1986, 6, 1. https://doi.org/10.1016/0167-5729(86)90003-8
  2. Christmann, K. Surf. Sci. Rep. 1988, 9, 1. https://doi.org/10.1016/0167-5729(88)90009-X
  3. Koleske, D. D.; Gates, S. M.; Jackson, B. J. Chem. Phys. 1994,101, 3301. https://doi.org/10.1063/1.467577
  4. Kratzer, P. J. Chem. Phys. 1997, 106, 6752. https://doi.org/10.1063/1.473672
  5. Buntin, S. A. J. Chem. Phys. 1998, 108, 1601. https://doi.org/10.1063/1.475530
  6. Ree, J.; Shin, H. K. J. Chem. Phys. 1999, 111, 10261. https://doi.org/10.1063/1.480375
  7. Ree, J.; Kim, Y. H.; Shin, H. K. Chem. Phys. Lett. 2002, 353, 368. https://doi.org/10.1016/S0009-2614(02)00026-X
  8. CRC Handbook of Chemistry and Physics, 64th Ed.; Weast, R. C.,Ed.; CRC Press: 1983; pp F176-F181.
  9. Ree, J.; Chang, K. S.; Moon, K. H.; Kim, Y. H. Bull. KoreanChem. Soc. 2001, 22, 889.
  10. Kim, Y. H.; Ree, J.; Shin, H. K. J. Chem. Phys. 1998, 108, 9821. https://doi.org/10.1063/1.476457
  11. Adelman, S. A. J. Chem. Phys. 1979, 71, 4471. https://doi.org/10.1063/1.438200
  12. Tully, J. C. J. Chem. Phys. 1980, 73, 1975. https://doi.org/10.1063/1.440287
  13. Kim, W. K.; Ree, J.; Shin, H. K. J. Phys. Chem. A 1999, 103, 411. https://doi.org/10.1021/jp982927f
  14. Radeke, M. R.; Carter, E. A. Phys. Rev. B 1996, 54, 11803. https://doi.org/10.1103/PhysRevB.54.11803
  15. Koleske, D. D.; Gates, S. M. J. Chem. Phys. 1993, 99, 8218. https://doi.org/10.1063/1.465647
  16. McEllistren, M.; Buehler, E. J.; Itchkawitz, B. S.; Boland, J. J. J.Chem. Phys. 1998, 108, 7384. https://doi.org/10.1063/1.476158
  17. American Institute of Physics Handbook, 3rd ed.; Gray, D. E., Ed.;McGraw-Hill: New York, 1972; pp 4-116.
  18. Lim, S. H.; Ree, J.; Kim, Y. H. Bull. Korean Chem. Soc. 1999, 20,1136.
  19. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; VanNostrand Reinhold: 1979.
  20. Van de Walle, C. G.; Street, R. A. Phys. Rev. B 1995, 51, 10615. https://doi.org/10.1103/PhysRevB.51.10615
  21. Kratzer, P.; Hammer, B.; Norskov, J. K. Phys. Rev. B 1995, 51,13432. https://doi.org/10.1103/PhysRevB.51.13432
  22. Tully, J. C.; Chabal, Y. J.; Raghavachari, K.; Bowman, J. M.;Lucchese, R. R. Phys. Rev. B 1985, 31, 1184. https://doi.org/10.1103/PhysRevB.31.1184
  23. Vidali, G.; Ihm, G.; Kim, H.-Y.; Cole, M. W. Surf. Sci. Rep. 1991,12, 133.
  24. Huheey, J. E.; Keoter, E. A.; Keiter, R. L. Inorganic Chemistry;Harper Collins College Publishers: 1993.
  25. Struve, W. S.; Krenos, J. R.; McFadden, D. L.; Herschbach, D. R.J. Chem. Phys. 1975, 62, 404. https://doi.org/10.1063/1.430485
  26. Ree, J.; Kim, Y. H.; Shin, H. K. J. Phys. Chem. A 2003, 107,5101. https://doi.org/10.1021/jp030227r
  27. Persson, M.; Jackson, B. J. Chem. Phys. 1995, 102, 1078. https://doi.org/10.1063/1.469456
  28. Gross, A. Surf. Sci. Rep. 1998, 32, 291. https://doi.org/10.1016/S0167-5729(98)00008-9

Cited by

  1. Interstellar bromine abundance is consistent with cometary ices from Rosetta vol.614, pp.1432-0746, 2018, https://doi.org/10.1051/0004-6361/201732325
  2. Trajectory Studies of Methyl Radical Reaction with Iodine Molecule vol.26, pp.9, 2004, https://doi.org/10.5012/bkcs.2005.26.9.1369
  3. Reaction between Gas-phase Hydrogen Atom and Chemisorbed Bromine Atoms on a Silicon(001)-(2X1) Surface vol.28, pp.12, 2004, https://doi.org/10.5012/bkcs.2007.28.12.2271
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450