DOI QR코드

DOI QR Code

The Cofactors Role on Chemical Mechanism of Recombinant Acetohydroxy Acid Synthase from Tobacco

  • Published : 2004.05.20

Abstract

Acetohydroxy acid synthase (AHAS) is one of several enzymes that require thiamine diphosphate and a divalent cation as essential cofactors. The active site contains several conserved ionizable groups and all of these appear to be important as judged by the fact that mutation diminishes or abolishes catalytic activity. Recently, we have shown [Yoon, M.-Y., Hwang, J.-H., Choi, M.-K., Baek, D.-K., Kim, J., Kim, Y.-T., Choi, J.-D. FEBS Letters 555 (2003), 185-191] that the activity is pH-dependent due to changes in $V_{max}$ and V/$K_m$. Data were consistent with a mechanism in which substrate was selectively catalyzed by the enzyme with an unprotonated base having a pK 6.48, and a protonated group having a pK of 8.25 for catalysis. Here, we have in detail studied the pH dependence of the kinetic parameters of the cofactors (ThDP, FAD, $Mg^{2+}$) in order to obtain information about the chemical mechanism in the active site. The $V_{max}$ of kinetic parameters for all cofactors was pH-dependent on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 9.5, 9.3 and 10.1, respectively. The V/$K_m$ of kinetic parameters for all cofactors was pH-dependent on the acidic and on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 6.2-6.4 on the acidic side and 9.0-9.1 on the basic side. The well-conserved histidine mutant (H392) did not affect the pH-dependence of the kinetic parameters. The data are discussed in terms of the acid-base chemical mechanism.

Keywords

References

  1. Umbarger, H. Annu. Rev. Biochem. 1978, 47, 533. https://doi.org/10.1146/annurev.bi.47.070178.002533
  2. Duggleby, R.; Pang, S. J. Biochem. Mol. Biol. 2000, 33, 1.
  3. Chang, Y.; Wang, A.; Cronan, J. J. Biol. Chem. 1993, 268, 3911.
  4. Macheroux, P.; Schonbrunn, E.; Svergun, D.; Volkov, D.; Koch,M.; Bornemann, S.; Thomeley, R. Biochem. J. 1998, 335, 319.
  5. Pang, S.; Guddat, L.; Duggleby, R. Acta Crystallog. 2001, Sect. D57, 1321.
  6. Pang, S.; Duggleby, R.; Guddat, L. J. Mol. Biol. 2002, 317, 249. https://doi.org/10.1006/jmbi.2001.5419
  7. Chong, C. K.; Shin, H. J.; Chang, S. I.; Choi, J. D. Biochem.Biophys. Res. Commun. 1999, 259, 136. https://doi.org/10.1006/bbrc.1999.0740
  8. Shin, H. J.; Chong, C. K.; Chang, S. I.; Choi, J. D. Biochem.Biophys. Res. Commun. 2000, 271, 801. https://doi.org/10.1006/bbrc.2000.2706
  9. Oh, K. J.; Park, E. J.; Yoon, M. Y.; Han, J. R.; Choi, J. D. Biochem.Biophys. Res. Commun. 2001, 282, 1237. https://doi.org/10.1006/bbrc.2001.4714
  10. Yoon, T. Y.; Chung, S. M.; Chang, S. I.; Yoon, M. Y.; Hahn, T. R.;Choi, J. D. Biochem. Biophys. Res. Commun. 2002, 293, 433. https://doi.org/10.1016/S0006-291X(02)00249-8
  11. Lee, B. H.; Choi, J. D.; Yoon, M. Y. Bull. Korean Chem. Soc.2002, 46, 765.
  12. Yoon, M. Y.; Hwang, J. H.; Choi, M. K.; Baek, D. K.; Kim, J.;Kim, Y. T.; Choi, J. D. FEBS Letters 2003, 555, 185. https://doi.org/10.1016/S0014-5793(03)01177-3
  13. Choi, J. D.; Kim, B. H.; Yoon, M. Y. Bull. Korean Chem. Soc.2003, 24, 1.
  14. Ibdah, M.; Bar-Ilan, A.; Livnah, O.; Schloss, J.; Barak, Z.;Chipman, Z. D. Biochemistry 1996, 35, 16282. https://doi.org/10.1021/bi961588i
  15. Bar-Ilan, A.; Balan, V.; Tittmann, K.; Golbik, R.; Vyazmensky,M.; Hubner, G.; Barak, Z.; Chipman, Z. D. Biochemistry 2001, 40,11946. https://doi.org/10.1021/bi0104524
  16. Pang, S. S.; Guddat, L. W.; Duggleby, R. G. J. Biochem. Chem.2002, 278, 7639.
  17. Chang, S. I.; Kang, M. K.; Choi, J. D.; Namgoong, S. K. Biochem.Biophys. Res. Commun. 1997, 234, 549. https://doi.org/10.1006/bbrc.1997.6678
  18. Westerfeld, W. W. J. Biol. Chem. 1943, 161, 495.
  19. Lee, Y. T.; Chang, A. K.; Duggleby, R. G. FEBS Letters 1999,452, 341. https://doi.org/10.1016/S0014-5793(99)00668-7
  20. Dawson, R. M. C.; Elliott, D. C.; Elliott, N. H.; Johnes, K. M.Data for Biochemical Research, 2nd ed.; Oxford University:London, 1979; p 423.
  21. Cleland, W. W. Methods Enzymol. 1979, 63, 103. https://doi.org/10.1016/0076-6879(79)63008-2
  22. Washabaush, M. W.; Jencks, W. P. Biochemistry 1988, 27, 5044. https://doi.org/10.1021/bi00414a015
  23. Alvarez, F. J.; Ermer, J.; Hubner, G.; Schellenberger, A.; Schowen,R. L. J. Am. Chem. Soc. 1991, 113, 8402. https://doi.org/10.1021/ja00022a030
  24. Jordan, F.; Li, H. J.; Brown, A. Biochemistry 1999, 38, 6369. https://doi.org/10.1021/bi990373g
  25. Kern, D.; Kern, G.; Neef, H.; Tittman, K.; Killenberg-Jabs, M.;Wikner, C.; Schneider, G.; Hubner, G. Science 1997, 275, 67. https://doi.org/10.1126/science.275.5296.67

Cited by

  1. FAD-independent and Herbicide-resistant Mutants of Tobacco Acetohydroxy Acid Synthase vol.26, pp.6, 2004, https://doi.org/10.5012/bkcs.2005.26.6.916
  2. Sulfonylurea is a Non-competitive Inhibitor of Acetohydroxyacid Synthase from Mycobacterium tuberculosis vol.27, pp.10, 2004, https://doi.org/10.5012/bkcs.2006.27.10.1697
  3. The Catalytic Role of the W573 in the Mobile Loop of Recombinant Acetohydroxyacid Synthase from Tobacco vol.27, pp.4, 2006, https://doi.org/10.5012/bkcs.2006.27.4.549
  4. Virtual Screening of Tubercular Acetohydroxy Acid Synthase Inhibitors through Analysis of Structural Models vol.28, pp.6, 2004, https://doi.org/10.5012/bkcs.2007.28.6.947