DOI QR코드

DOI QR Code

Ab Initio Study of the Conformations of Tetramethoxycalix[4]arenes

  • Published : 2004.01.20

Abstract

In this study we have performed ab initio computer simulations to investigate the conformational characteristics of the tetramethoxycalix[4]arenes (1 and 2). The structures of four types (cone, partial cone, 1,2-alternate, and 1,3-alternate) of conformers for each compound have been optimized using ab initio RHF/6-31G and 6-31$G^{**}$ methods. General trends in relative stabilities of tetramethyl ether derivatives of calix[4]arene 1 and p-tert-butylcalix[4]arene 2 are similar and decrease in following order: partial cone (most stable) > cone > 1,3-alternate > 1,2-alternate. The calculated results of the most stable conformation of partial cone structure agree with the reported NMR experimental observations.

Keywords

References

  1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989.
  2. Calixarenes: A Versatile Class of MacrocyclicCompounds; Vicens, J., Bohmer, V., Eds.; Kluwer AcademicPublishers: Dordrecht, The Netherlands, 1991.
  3. Inclusion Phenomena and Molecular Recognition; Atwood, J. L., Ed.; Plenum Press: New York, 1989.
  4. Balzani, V.; De Cola, L. Supramolecular Chemistry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
  5. Computational Approaches in Supramolecular Chemistry; Wipff, G., Ed.; Kluwar Academic Publishers: Dordrecht, The Netherlands, 1994.
  6. Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt,D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am.Chem. Soc. 1990, 112, 4165. https://doi.org/10.1021/ja00167a010
  7. Groonen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.;Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D.N. J. Am. Chem. Soc. 1991, 113, 2385. https://doi.org/10.1021/ja00007a006
  8. Wipff, G.; Guilbaud, P.; Varnek, A. J. Am. Chem. Soc. 1993, 115,8298. https://doi.org/10.1021/ja00071a044
  9. Harada, T.; Rudzinski, J. M.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1992, 2, 2109.
  10. Harada, T.; Rudzinski, J. M.; Shinkai, S. Tetrahedron 1993, 49, 5941. https://doi.org/10.1016/S0040-4020(01)87180-5
  11. Harada, T.; Ohseto, F.; Shinkai, S. Tetrahedron 1994, 50, 13377. https://doi.org/10.1016/S0040-4020(01)89345-5
  12. van Hoorn, W. P.; Briels, W. J.; van Duynthoven, J. P. M.; vanVeggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1998, 63,1299. https://doi.org/10.1021/jo972134+
  13. Burkert, U.; Allinger, N. L. Molecular Mechanics; ACS Monograph 177, American Chemical Society: Washington, D.C. 1982.
  14. MM3: Molecular Mechanics 3; Allinger, N. L.; Yuh, Y. H.; Lii, J.-H. J. Am. Chem. Soc. 1989, 111, 8551. https://doi.org/10.1021/ja00205a001
  15. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465. https://doi.org/10.1007/BF02705436
  16. Choe, J.-I.; Chang, S.-K.; Ham, S. W.; Nanbu, S.; Aoyagi, M. Bull. Korean Chem. Soc. 2001, 22, 1248.
  17. Choe, J.-I.; Chang, S.-K.; Nanbu, S. Bull. Korean Chem. Soc. 2002, 23, 891.
  18. Hong, B. H.; Lee, J. Y.; Lee, C.-W.; Kim, J. C.; Bae, S. C.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 10748.
  19. Kim, K. S.;Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268. https://doi.org/10.1021/ja0259786
  20. Hong, B. H.; Bae, S. C.; Lee, C.-W.; Jeong, S.; Kim, K. S. Science 2001, 294, 348. https://doi.org/10.1126/science.1062126
  21. Kim, K. S. Curr. Appl. Phys. 2002, 2, 65. https://doi.org/10.1016/S1567-1739(01)00091-8
  22. Suh, S. B.; Hong, B. H.; Tarakeshwar, P.; Youn, S. J.; Jeong, S. ; Kim, K. S. Phys. Rev. B 2003, 67, 241402(R). https://doi.org/10.1103/PhysRevB.67.241402
  23. Kim, K. S. Bull. Korean Chem. Soc. 2003, 24, 757. https://doi.org/10.1007/s11814-007-0038-2
  24. HyperChem Release 6.3; Hypercube, Inc.: Waterloo, Ontario, Canada, 2001.
  25. Gutsche, C. D.; Bauer, L. J. Tetrahedron Lett. 1981, 22, 4763. https://doi.org/10.1016/S0040-4039(01)92337-8
  26. Fisher, S.; Grootenhuis, P. D. J.; Groonen, L. C.; van Hoorn, W. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Karplus, M. J. Am. Chem. Soc. 1996, 117, 1610.

Cited by

  1. Synthesis of Macrocyclic Receptors with Intrinsic Fluorescence Featuring Quinizarin Moieties vol.80, pp.10, 2015, https://doi.org/10.1021/acs.joc.5b00223
  2. Influence of polyether chain on the non-covalent interactions and stability of the conformers of calix[4]crown ethers vol.91, pp.1-2, 2018, https://doi.org/10.1007/s10847-018-0801-5
  3. Ab Initio Study of Complexation of Alkali Metal Ions with Alkyl Esters of p-tert-Butylcalix[4]arene vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.847
  4. Ab Initio Study of the Conformational Isomers of Tetraethyl and Triethyl Esters of Calix[4]arene vol.25, pp.4, 2004, https://doi.org/10.5012/bkcs.2004.25.4.553
  5. Ab initio calculated structures of conformers for 1,3-dimethoxy-p-tert-butylcalix[4]crown-5-ether complexed with potassium cation vol.722, pp.1, 2005, https://doi.org/10.1016/j.theochem.2004.11.052
  6. Ab initio Study of the Complexes of Trimethyl Ether of Monodeoxycalix[4]arene with Potassium Ion: Cation-π Interactions vol.27, pp.4, 2006, https://doi.org/10.5012/bkcs.2006.27.4.508
  7. DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1893
  8. DFT Conformational Study of the Monomethoxycalix[5]arene vol.29, pp.11, 2004, https://doi.org/10.5012/bkcs.2008.29.11.2152
  9. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  10. mPW1PW91 Calculated Conformational Study of Calix[n]arene (n = 4,5,6): Hydrogen Bond vol.53, pp.6, 2004, https://doi.org/10.5012/jkcs.2009.53.6.640