DOI QR코드

DOI QR Code

Peroxidase Activity of Cytochrome c

  • Kim, Nam-Hoon (Department of Genetic Engineering, Cheongju University) ;
  • Jeong, Moon-Sik (Department of Genetic Engineering, Cheongju University) ;
  • Choi, Soo-Young (Department of Genetic Engineering, Division of Life Sciences, Hallym University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University)
  • Published : 2004.12.20

Abstract

The peroxidase activity of cytochrome c was studied by using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS). Initial rate of ABTS oxidation formation was linear with respect to the concentration of cytochrome c between 2.5-10 ${\mu}$M and $H_2O_2$ between 0.1-0.5 mM. The optimal pH for the peroxidase activity of cytochrome c was 7.0-8.5. The peroxidase activity retained about 40% of the maximum activity when exposed at 60 $^{\circ}C$. for 10 min. The peroxidase activity showed a typical Michaelis-Menten kinetics for $H_2O_2$ which Km value was 29.6 mM. Radical scavengers inhibited the peroxidase activity of cytochrome c. The peroxidase activity was significantly inhibited by the low concentration of iron chelator, deferoxamine. The results suggested that the peroxidase activity was associated with iron in the heme of cytochrome c.

Keywords

References

  1. Moore, G. R.; Pettigrew, G. W. Cytochrome c: Evolution,Structure, and Physicochemical Aspects; Springer-Verlag: Berlin,1990.
  2. Dumont, M. E.; Cardillo, T. S.; Hayes, M. K.; Sherman, F. Mol.Cell Biol. 1991, 11, 5487.
  3. Liu, X.; Kim, C. N.; Yan, J.; Jemmerson, R.; Wang, X. Cell 1996,86, 147. https://doi.org/10.1016/S0092-8674(00)80085-9
  4. Olteanu, A.; Patel, C. N.; Demon, M. M.; Kennedy, S.; Linhoff,M. W.; Minder, C. M.; Potts, P. R.; Deshmukh, M.; Pielak, G. J. Biochem. Biophys. Res. Commun. 2003, 312, 733. https://doi.org/10.1016/j.bbrc.2003.10.182
  5. Hashimoto, M.; Takeda, A.; Hsu, L. J.; Takenouchi, T.; Masliah,E. J. Biol. Chem. 1999, 274, 28849. https://doi.org/10.1074/jbc.274.41.28849
  6. Radi, R.; Thomson, L.; Rubbo, H.; Prodanov, E. Arch. Biochem.Biophys. 1991, 288, 112. https://doi.org/10.1016/0003-9861(91)90171-E
  7. Radi, R.; Sims, S.; Cassina, A.; Turrens, J. F. Free Rad. Biol. Med.1993, 15, 653. https://doi.org/10.1016/0891-5849(93)90169-U
  8. Lawrence, A.; Jomes, C. M.; Wardman, P.; Burkitt, M. J. J. Biol.Chem. 2003, 278, 29410. https://doi.org/10.1074/jbc.M300054200
  9. Rush, J. D.; Koppenol, W. H. J. Am. Chem. Soc. 1988, 110, 4957. https://doi.org/10.1021/ja00223a013
  10. Childs, R. E.; Bardsley, W. G. Biochem. J. 1975, 145, 93.
  11. Wolfenden, B. S.; Wilson, R. L. J. Chem. Soc. Perkin Trans. 1982,II, 805.
  12. Prasad, S.; Maiti, N. C.; Mazumdar, S.; Mitra, S. Biochim. Biophys.Acta 2002, 1596, 63. https://doi.org/10.1016/S0167-4838(02)00205-4
  13. Boveries, A.; Oshino, N.; Chance, B. Biochem. J. 1972, 128, 617.
  14. Yim, M. B.; Chock, P. B.; Stadtman, E. R. J. Biol. Chem. 1993,268, 4099.
  15. Kang, J. H. Bull. Korean Chem. Soc. 2004, 25, 625. https://doi.org/10.5012/bkcs.2004.25.5.625
  16. Kamp, D. W.; Graceffa, P.; Pryor, W. A.; Weitzmn, S. A. FreeRadic. Biol. Med. 1992, 12, 293. https://doi.org/10.1016/0891-5849(92)90117-Y
  17. DeBore, D. A.; Clark, R. E. Ann. Thorac. Surg. 1992, 53, 412. https://doi.org/10.1016/0003-4975(92)90260-B
  18. Lee, C. T.; Liao, S. C.; Hsu, K. T.; Lam, K. K.; Chen, J. B. Ren.Fail. 1999, 21, 665. https://doi.org/10.3109/08860229909094160

Cited by

  1. Oleamide Synthesizing Activity from Rat Kidney vol.282, pp.31, 2007, https://doi.org/10.1074/jbc.M610070200
  2. Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy vol.33, pp.3-5, 2007, https://doi.org/10.1163/156856707779238630
  3. Neurodevelopmental Consequences of Sub-Clinical Carbon Monoxide Exposure in Newborn Mice vol.7, pp.2, 2012, https://doi.org/10.1371/journal.pone.0032029
  4. Interactions of Hydroxyapatite with Proteins and Its Toxicological Effect to Zebrafish Embryos Development vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0032818
  5. Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study vol.9, pp.2, 2012, https://doi.org/10.1007/s13738-011-0040-9
  6. Modification with hemeproteins increases the diffusive movement of nanorods in dilute hydrogen peroxide solutions vol.49, pp.78, 2013, https://doi.org/10.1039/c3cc44614j
  7. General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals vol.7, pp.10, 2013, https://doi.org/10.1021/nn402994m
  8. Subclinical Carbon Monoxide Limits Apoptosis in the Developing Brain After Isoflurane Exposure vol.118, pp.6, 2014, https://doi.org/10.1213/ANE.0000000000000030
  9. Purification and characterization of a cytochrome c with novel caspase-3 activation activity from the pathogenic fungus Rhizopus arrhizus vol.16, pp.1, 2015, https://doi.org/10.1186/s12858-015-0050-9
  10. vol.100, pp.5, 2017, https://doi.org/10.1002/hlca.201700027
  11. Nile Red Synchronous Scan Fluorescence Spectroscopy to Follow Matrix Modification in Sol–Gel Derived Media and its Effect on the Peroxidase Activity of cytochrome c vol.18, pp.6, 2008, https://doi.org/10.1007/s10895-008-0353-y
  12. on Silica Nanoparticles: Influence of Nanoparticle Size on Protein Structure, Stability, and Activity vol.5, pp.4, 2009, https://doi.org/10.1002/smll.200800995
  13. Carnosine and Related Compounds Protect against the Hydrogen Peroxide-Mediated Cytochrome c Modification vol.27, pp.5, 2004, https://doi.org/10.5012/bkcs.2006.27.5.663
  14. Lipid Peroxidation Induced by the Reaction of Cytochrome c with Hydrogen Peroxide vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.830
  15. Carnosine and Homocarnosine Inhibit Cytochrome c-Mediated DNA Strand Breakage vol.27, pp.11, 2004, https://doi.org/10.5012/bkcs.2006.27.11.1891
  16. Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System vol.28, pp.1, 2004, https://doi.org/10.5012/bkcs.2007.28.1.077
  17. Photoinduced reduction of catalytically and biologically active Ru(II)bisterpyridine–cytochrome c bioconjugates vol.2007, pp.19, 2004, https://doi.org/10.1039/b702996a
  18. Application of Fluorescence Techniques to Characterise the Preparation of Protein-Containing Sol-Gel Derived Hosts for use as Catalytic Media vol.34, pp.4, 2004, https://doi.org/10.3184/146867809x466708
  19. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(ii)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytoc vol.8, pp.1, 2010, https://doi.org/10.1039/b919289a
  20. Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres vol.2, pp.None, 2004, https://doi.org/10.1016/j.rinphs.2012.11.001
  21. Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins vol.115, pp.None, 2015, https://doi.org/10.1016/j.pep.2015.05.012
  22. Peroxide-Induced Liberation of Iron from Heme Switches Catalysis during Luminol Reaction and Causes Loss of Light and Heterodyning of Luminescence Kinetics vol.4, pp.2, 2004, https://doi.org/10.1021/acsomega.8b03564
  23. PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study vol.7, pp.28, 2004, https://doi.org/10.1039/c9tb00590k
  24. An integrated process combining the reaction and purification of PEGylated proteins vol.21, pp.23, 2004, https://doi.org/10.1039/c9gc01459d
  25. Enhancing Peroxidase Activity of Cytochrome c by Modulating Interfacial Interaction Forces with Graphene Oxide vol.36, pp.5, 2004, https://doi.org/10.1021/acs.langmuir.9b03151
  26. Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery vol.13, pp.12, 2004, https://doi.org/10.3390/pharmaceutics13122048