References
- Moore, G. R.; Pettigrew, G. W. Cytochrome c: Evolution,Structure, and Physicochemical Aspects; Springer-Verlag: Berlin,1990.
- Dumont, M. E.; Cardillo, T. S.; Hayes, M. K.; Sherman, F. Mol.Cell Biol. 1991, 11, 5487.
- Liu, X.; Kim, C. N.; Yan, J.; Jemmerson, R.; Wang, X. Cell 1996,86, 147. https://doi.org/10.1016/S0092-8674(00)80085-9
- Olteanu, A.; Patel, C. N.; Demon, M. M.; Kennedy, S.; Linhoff,M. W.; Minder, C. M.; Potts, P. R.; Deshmukh, M.; Pielak, G. J. Biochem. Biophys. Res. Commun. 2003, 312, 733. https://doi.org/10.1016/j.bbrc.2003.10.182
- Hashimoto, M.; Takeda, A.; Hsu, L. J.; Takenouchi, T.; Masliah,E. J. Biol. Chem. 1999, 274, 28849. https://doi.org/10.1074/jbc.274.41.28849
- Radi, R.; Thomson, L.; Rubbo, H.; Prodanov, E. Arch. Biochem.Biophys. 1991, 288, 112. https://doi.org/10.1016/0003-9861(91)90171-E
- Radi, R.; Sims, S.; Cassina, A.; Turrens, J. F. Free Rad. Biol. Med.1993, 15, 653. https://doi.org/10.1016/0891-5849(93)90169-U
- Lawrence, A.; Jomes, C. M.; Wardman, P.; Burkitt, M. J. J. Biol.Chem. 2003, 278, 29410. https://doi.org/10.1074/jbc.M300054200
- Rush, J. D.; Koppenol, W. H. J. Am. Chem. Soc. 1988, 110, 4957. https://doi.org/10.1021/ja00223a013
- Childs, R. E.; Bardsley, W. G. Biochem. J. 1975, 145, 93.
- Wolfenden, B. S.; Wilson, R. L. J. Chem. Soc. Perkin Trans. 1982,II, 805.
- Prasad, S.; Maiti, N. C.; Mazumdar, S.; Mitra, S. Biochim. Biophys.Acta 2002, 1596, 63. https://doi.org/10.1016/S0167-4838(02)00205-4
- Boveries, A.; Oshino, N.; Chance, B. Biochem. J. 1972, 128, 617.
- Yim, M. B.; Chock, P. B.; Stadtman, E. R. J. Biol. Chem. 1993,268, 4099.
- Kang, J. H. Bull. Korean Chem. Soc. 2004, 25, 625. https://doi.org/10.5012/bkcs.2004.25.5.625
- Kamp, D. W.; Graceffa, P.; Pryor, W. A.; Weitzmn, S. A. FreeRadic. Biol. Med. 1992, 12, 293. https://doi.org/10.1016/0891-5849(92)90117-Y
- DeBore, D. A.; Clark, R. E. Ann. Thorac. Surg. 1992, 53, 412. https://doi.org/10.1016/0003-4975(92)90260-B
- Lee, C. T.; Liao, S. C.; Hsu, K. T.; Lam, K. K.; Chen, J. B. Ren.Fail. 1999, 21, 665. https://doi.org/10.3109/08860229909094160
Cited by
- Oleamide Synthesizing Activity from Rat Kidney vol.282, pp.31, 2007, https://doi.org/10.1074/jbc.M610070200
- Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy vol.33, pp.3-5, 2007, https://doi.org/10.1163/156856707779238630
- Neurodevelopmental Consequences of Sub-Clinical Carbon Monoxide Exposure in Newborn Mice vol.7, pp.2, 2012, https://doi.org/10.1371/journal.pone.0032029
- Interactions of Hydroxyapatite with Proteins and Its Toxicological Effect to Zebrafish Embryos Development vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0032818
- Microperoxidase-11/NH2-FSM16 as a H2O2-resistant heterogeneous nanobiocatalyst: a suicide-inactivation study vol.9, pp.2, 2012, https://doi.org/10.1007/s13738-011-0040-9
- Modification with hemeproteins increases the diffusive movement of nanorods in dilute hydrogen peroxide solutions vol.49, pp.78, 2013, https://doi.org/10.1039/c3cc44614j
- General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals vol.7, pp.10, 2013, https://doi.org/10.1021/nn402994m
- Subclinical Carbon Monoxide Limits Apoptosis in the Developing Brain After Isoflurane Exposure vol.118, pp.6, 2014, https://doi.org/10.1213/ANE.0000000000000030
- Purification and characterization of a cytochrome c with novel caspase-3 activation activity from the pathogenic fungus Rhizopus arrhizus vol.16, pp.1, 2015, https://doi.org/10.1186/s12858-015-0050-9
- vol.100, pp.5, 2017, https://doi.org/10.1002/hlca.201700027
- Nile Red Synchronous Scan Fluorescence Spectroscopy to Follow Matrix Modification in Sol–Gel Derived Media and its Effect on the Peroxidase Activity of cytochrome c vol.18, pp.6, 2008, https://doi.org/10.1007/s10895-008-0353-y
- on Silica Nanoparticles: Influence of Nanoparticle Size on Protein Structure, Stability, and Activity vol.5, pp.4, 2009, https://doi.org/10.1002/smll.200800995
- Carnosine and Related Compounds Protect against the Hydrogen Peroxide-Mediated Cytochrome c Modification vol.27, pp.5, 2004, https://doi.org/10.5012/bkcs.2006.27.5.663
- Lipid Peroxidation Induced by the Reaction of Cytochrome c with Hydrogen Peroxide vol.27, pp.6, 2004, https://doi.org/10.5012/bkcs.2006.27.6.830
- Carnosine and Homocarnosine Inhibit Cytochrome c-Mediated DNA Strand Breakage vol.27, pp.11, 2004, https://doi.org/10.5012/bkcs.2006.27.11.1891
- Oxidative Modification of Neurofilament-L by the Cytochrome c and Hydrogen Peroxide System vol.28, pp.1, 2004, https://doi.org/10.5012/bkcs.2007.28.1.077
- Photoinduced reduction of catalytically and biologically active Ru(II)bisterpyridine–cytochrome c bioconjugates vol.2007, pp.19, 2004, https://doi.org/10.1039/b702996a
- Application of Fluorescence Techniques to Characterise the Preparation of Protein-Containing Sol-Gel Derived Hosts for use as Catalytic Media vol.34, pp.4, 2004, https://doi.org/10.3184/146867809x466708
- Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(ii)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytoc vol.8, pp.1, 2010, https://doi.org/10.1039/b919289a
- Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres vol.2, pp.None, 2004, https://doi.org/10.1016/j.rinphs.2012.11.001
- Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins vol.115, pp.None, 2015, https://doi.org/10.1016/j.pep.2015.05.012
- Peroxide-Induced Liberation of Iron from Heme Switches Catalysis during Luminol Reaction and Causes Loss of Light and Heterodyning of Luminescence Kinetics vol.4, pp.2, 2004, https://doi.org/10.1021/acsomega.8b03564
- PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study vol.7, pp.28, 2004, https://doi.org/10.1039/c9tb00590k
- An integrated process combining the reaction and purification of PEGylated proteins vol.21, pp.23, 2004, https://doi.org/10.1039/c9gc01459d
- Enhancing Peroxidase Activity of Cytochrome c by Modulating Interfacial Interaction Forces with Graphene Oxide vol.36, pp.5, 2004, https://doi.org/10.1021/acs.langmuir.9b03151
- Dually Cross-Linked Core-Shell Structure Nanohydrogel with Redox-Responsive Degradability for Intracellular Delivery vol.13, pp.12, 2004, https://doi.org/10.3390/pharmaceutics13122048