DOI QR코드

DOI QR Code

A Reinvestigation of the Fragmentation of 2-Carbena-1,3-dioxolane by CASSCF and CASPT2 Calculations

  • Published : 2004.02.20

Abstract

In agreement with the results of previous MP2 calculations by Sauers, B3LYP, CASSCF, and CASPT2 calculations on the parent 2-carbena-1,3-dioxolane show that it fragments to ethylene plus $CO_2$ by a concerted pathway with only a small energy barrier. Not only is fragmentation via stepwise C-O bond cleavage computed to be a much higher energy pathway, but the singlet diradical that would be an intermediate along such a reaction path is not even computed to be a local minimum on the potential energy surface.

Keywords

References

  1. Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677. https://doi.org/10.1021/ja00900a043
  2. Corey, E. J.; Carey, F. A.; Winter, R. A. E. J. Am. Chem. Soc. 1965, 87, 934. https://doi.org/10.1021/ja01082a057
  3. Beracierta, A. P.; Whiting, D. A. Tetrahedron Lett. 1976, 2367.
  4. Hanessian, S.; Bargiotti, A.;LaRue, M. Tetrahedron Lett. 1978, 737.
  5. Borden, W. T.; Concannon, P. W.; Phillips, D. I. Tetrahedron Lett.1973, 3161.
  6. Borden, W. T.; Hoo, L. H. J. Am. Chem. Soc. 1978, 100, 6274.
  7. Feller, D.; Davidson, E. R.; Borden, W. T. J. Am. Chem. Soc. 1981,103, 2558. https://doi.org/10.1021/ja00400a012
  8. Sauers, R. Tetrahedron Lett. 1994, 7213.
  9. Andersson, K.; Malmqvist, P.-A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. J. Phys. Chem. 1990, 94, 5483. https://doi.org/10.1021/j100377a012
  10. Andersson, K.; Malmqvist, P.-A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218. https://doi.org/10.1063/1.462209
  11. Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. Engl.1969, 8, 781. https://doi.org/10.1002/anie.196907811
  12. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213. https://doi.org/10.1007/BF00533485
  13. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  14. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scxuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.;Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.;Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong,M. W.; Andres, J. L.; Gonzalez, C.; Head-Gorden, M.; Replogle,E. S.; Pople, J. A. Gaussian 98, Revision A.9; Gaussian Inc.:Pittsburg, PA, 1998.
  16. Roos, B. O. Adv. Chem. Phys. 1987, 69, 339.
  17. Anderson, K.; Blomberg, M. R. A.; Fülscher, M. P.; Kellö, V.;Lindh, R.; Malmqvist, P.-Â.; Neogrady, P.; Olsen, J.; Roos, B. O.;Sadlej, A. J.; Schutz, M.; Serrano-Andres, L.; Siegbahn, P. E. M.;Widmark, P.-O. MOLCAS version 5.0; Department of TheoreticalChemistry, Chemical Center: University of Lund, P.O. Box. 124,S-221 00 Lund, Sweden, 1997.
  18. Borden, W. T.; Davidson, E. R. Acc. Chem. Res. 1996, 29, 67. https://doi.org/10.1021/ar950134v
  19. Bally, T.; Borden, W. T. In Reviews in Computational Chemistry;Lipkowitz, K. B.; Boyd, D. B., Eds.; Wiley-VCH: New York,1999; Vol. 13, p 1. https://doi.org/10.1002/9780470125908.ch1

Cited by

  1. Revisiting the deoxydehydration of glycerol towards allyl alcohol under continuous-flow conditions vol.19, pp.13, 2017, https://doi.org/10.1039/C7GC00657H
  2. The deoxydehydration (DODH) reaction: a versatile technology for accessing olefins from bio-based polyols vol.22, pp.15, 2004, https://doi.org/10.1039/d0gc00689k