DOI QR코드

DOI QR Code

Facile Synthesis and Radioiodine Labeling of Hypericin

  • Kim, Sang-Wook (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Park, Jeong-Hoon (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Yang, Seung-Dae (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Hur, Min-Goo (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Kim, Yu-Seok (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Chai, Jong-Seo (Cyclotron Application Laboratory, Korea Cancer Center Hospital) ;
  • Kim, Young-Soon (Department of Chemistry, Dongguk University) ;
  • Yu, Kook-Hyun (Department of Chemistry, Dongguk University)
  • Published : 2004.08.20

Abstract

Hypericin (1,3,4,6,8,13-hexahydroxy-10,11-dimethylphenanthro[1,10,9,8-opqra]perylene-7,14-dione), an antidepressant which is also known to be a potent protein kinase C (PKC) inhibitor was synthesized as a precursor for radioiodine labeling via two step reactions. Malignant glioma cells express higher PKC activity compared to untransformed glial cell. Here we report the synthesis and radioiodine labeling of hypericin as a potential brain tumor imaging radiopharmaceutical. The reference compound, 2-iodohypericin, and its radiolabelled analogues, 2-[$^{123}I$]iodohypericin and 2-[$^{124}I$]iodohypericin have been prepared by the reaction of hypericin with NaI or [$^{123}I$]NaI or [$^{124}I$]NaI. The labeling yield was 60-65% for each analogue and the optimal reaction time was 10 min. The purification and isolation of the labelled products were achieved by a reversed-phase HPLC.

Keywords

References

  1. Gruszecka-Kowalik, E.; Zalkow, L. H. Org. Prep. Proc. Int. 2000,32, 57. https://doi.org/10.1080/00304940009356746
  2. Muruclo, D.; Lavie, G.; Lavie, D. Proc. Natl. Acad. Sci. 1988, 85,5230. https://doi.org/10.1073/pnas.85.14.5230
  3. Lavie, G.; Valentine, F.; Levin, B.; Mazur, Y.; Gallo, G.; Lavie,D.; Weiner, D.; Muruclo, D. Proc. Natl. Acad. Sci. 1989, 86,5963. https://doi.org/10.1073/pnas.86.15.5963
  4. Lavie, G.; Mazur, Y.; Valentine, F.; Lavie, D.; Levin, B.; Itta, Y.;Muruclo, D. AIDS, Anti HIV Agents Ther Vaccines 1990, 616,556.
  5. Kraus, G. A.; Pratt, D.; Tossberg, J.; Carpenter, S. Biochem.Biophys. Res. Commun. 1990, 172, 149. https://doi.org/10.1016/S0006-291X(05)80185-8
  6. Zhang, W.; Law, R. E.; Hinton, D. R.; Couldwell, W. T. CancerLett. 1997, 120, 31. https://doi.org/10.1016/S0304-3835(97)00287-5
  7. Pollack, I. F.; RAndall, M. S.; Kristofik, M. P.; Kelly, R. H.;Selker, R. G.; Vertosick, F. T. J. Neurosurg. 1990, 73, 98. https://doi.org/10.3171/jns.1990.73.1.0098
  8. Couldwell, W. T.; Antel, J. P.; Apuzzo, M. L. J.; Yong, V. W. J.Neurosurg. 1990, 73, 594. https://doi.org/10.3171/jns.1990.73.4.0594
  9. Couldwell, W. T.; Antel, J. P.; Yong, V. W. Neurosurgery 1992, 31,717. https://doi.org/10.1227/00006123-199210000-00015
  10. Couldwell, W. T.; Uhm, J. H.; Antel, J. P.; Yong, V. W.Neurosurgery 1991, 29, 880. https://doi.org/10.1227/00006123-199112000-00013
  11. Tysnes, O. B.; Laerum, O. D. Neurosurgery 1993, 13, 1325.
  12. Baltuch, G. H.; Couldwell, W. T.; Villemure, J. G.; Yong, V. W.Neurosurgery 1993, 33, 495. https://doi.org/10.1227/00006123-199309000-00021
  13. Couldwell, W. T.; Hintun, D. R.; He, S. et al. FEBS Lett. 1994,345, 43. https://doi.org/10.1016/0014-5793(94)00415-3
  14. Takahashi, I.; Nakanishi, S.; Kobayashi, E.; Nakano, H.; Suzuki,K.; Tamaoki, T. Biochem. Biophys. Res. Commun. 1989, 165,1207. https://doi.org/10.1016/0006-291X(89)92730-7
  15. Brockmann, H.; Kluge, F.; Muxfeldt, H. Chem. Ber. 1957, 90,2302. https://doi.org/10.1002/cber.19570901027
  16. Falk, H.; Schoppel, G. Monatsh. Chem. 1992, 123, 931. https://doi.org/10.1007/BF00811548
  17. Vanbilloen, H.; Bormans, G.; Chen, B.; de Witte, P.; Verbruggen,A.; Verbeke, K. J. Labelled Cpd. Radiopharm. 2001, 44 (Supp. 1),S965. https://doi.org/10.1002/jlcr.25804401339
  18. Scholten, B.; Kovacs, Z.; Tarkanyi, F.; Qaim, S. M. Appl. Radiat.Isot. 1995, 46, 255. https://doi.org/10.1016/0969-8043(94)00145-P

Cited by

  1. A practical and general ipso iodination of arylboronic acids using N-iodomorpholinium iodide (NIMI) as a novel iodinating agent: mild and regioselective synthesis of aryliodides vol.5, pp.103, 2015, https://doi.org/10.1039/C5RA18820B
  2. An efficient multigram synthesis of hypericin improved by a low power LED based photoreactor pp.1520-586X, 2017, https://doi.org/10.1021/acs.oprd.7b00317
  3. Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives vol.8, pp.39, 2018, https://doi.org/10.1039/C8RA03732A
  4. Synthesis and in vitro/vivo Evaluation of Iodine-123/124 Labelled Hypericin Derivatives vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.2023
  5. From Protohypericin to Hypericin: Photoconversion Analysis Using a Time-Resolved Thermal Lens Technique vol.73, pp.8, 2004, https://doi.org/10.1177/0003702819846921