DOI QR코드

DOI QR Code

Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes

  • Published : 2004.08.20

Abstract

Tyrosinase was covalently immobilized on platinum electrode according to the method we developed for laccase (Bull. Korean Chem. Soc. 2002, 23(7), 385) and p-chlorophenol, p-cresol, and phenol could be detected with sensitivities of 334, 139 and 122 nA/ ${\mu}M$ and the detection limits of 1.0, 2.0, and 2.5 ${\mu}M$, respectively. The response time ($t_{90\%}$) is 3 seconds for p-chlorophenol, and 5 seconds for p-cresol and phenol. The optimal pHs of the sensor are in the range of 5.0- 6.0. This sensor can tolerate at least 500 times repeated injections of p-chlorophenol with retaining 80% of initial activity. In case of tyrosinase and laccase co immobilized platinum electrode, the sensitivities are 560 nA/ ${\mu}M$ for p-phenylenediamine (PPD) and 195 nA/ ${\mu}M$ for p-chlorophenol, respectively. The sensitivity of the bi-enzyme sensor for PPD increases 70% compared to that of only laccase immobilized one, but the sensitivity for p-chlorophenol decreases 40% compared to that of only tyrosinase immobilized one. The sensitivity increase for the bi-enzyme sensor for PPD can be ascribed to the additional catalytic function of the co-immobilized tyrosinase. The sensitivity decrease for p-chlorophenol can be explained by the “blocking effect” of the co-immobilized laccase, which hinders the mass transport through the immobilized layer. If PPD was detected with the electrode that had been used for p-chlorophenol, the sensitivity decreased 20% compared to that of the electrode that had been used only for PPD. Similarly, if p-chlorophenol was detected with PPD detected electrode, the sensitivity also decreased 20%. The substrate-induced conformation changes of the enzymes in a confined layer may be responsible for the phenomena.

Keywords

References

  1. Rajeshwar, K.; Ibanez, J. G. Environmental Electrochemistry;Academic press: 1997; pp 253-254.
  2. Kotte, H.; Grundig, B.; Vorlop, K.-D.; Strehlitz, B.; Stottmeister,U. Anal. Chem. 1995, 67, 65. https://doi.org/10.1021/ac00097a011
  3. Duran, N.; Rosa, M. A.; D'Annibale, A.; Gianfreda, L. EnzymeMicrob. Tech. 2002, 31, 907. https://doi.org/10.1016/S0141-0229(02)00214-4
  4. Robb, D. A. Tyrosinase in Copper Proteins & Copper Enzymes;Lontie, R., Ed.; CRC Press, Inc.: 1984; Vol II, Chap 7, p 207.
  5. Messerschmidt, A. Copper Metalloenzymes in ComprehensiveBiological Catalysis; Sinnott, M., Ed.; Academic Press: 1998; Vol III, Chap 38.
  6. Cuff, M. E.; Miller, K. I.; van Hold, K. E.; Hendrickson, W. A. J.Mol. Biol. 1998, 278, 855. https://doi.org/10.1006/jmbi.1998.1647
  7. Gerdemann, C.; Eicken, C.; Krebs, B. Acc. Chem. Res. 2002, 35,183. https://doi.org/10.1021/ar990019a
  8. Decker, H.; Tuczek, F. TIBS 2000, 25, 392.
  9. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev.1996, 96, 2563. https://doi.org/10.1021/cr950046o
  10. Decker, H.; Dillinger, R.; Tuczek, F. Angew. Chem. Int. Ed. 2000,39(9), 1591. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1591::AID-ANIE1591>3.0.CO;2-H
  11. Olivares, C.; Garcia-Borron, J. C.; Solano, F. Biochemistry 2002,41, 679. https://doi.org/10.1021/bi011535n
  12. Sanchez-Ferrer, A.; Rodringuez-Lopez, J. N.; Garcia-Canovas, F.;Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1. https://doi.org/10.1016/0167-4838(94)00204-T
  13. Fontecave, M.; Pierre, J.-L. Coordin. Chem. Rev. 1998, 170, 125. https://doi.org/10.1016/S0010-8545(98)00068-X
  14. Reinhammar, B. Laccase in Copper Proteins & Copper Enzymes;Rene, L., Ed.; CRC Press: 1984; Vol III, Chap 1.
  15. Thurston, C. F. Microbiology 1994, 140, 19. https://doi.org/10.1099/13500872-140-1-19
  16. Yaropolov, A. I.; Skorobogatko, O. V.; Vartanov, S. S.; Varfolomeyev,S. D. Appl. Biochem. Biotech. 1994, 49, 257. https://doi.org/10.1007/BF02783061
  17. Ducros, V.; Brzozowski, A. M.; Wilson, K. S.; Brown, S. H.;Ostergaard, P.; Schneider, P.; Yaver, D. S.; Pedersen, A. H.;Davies, G. J. Nature Structl. Biol. 1998, 5(4), 310. https://doi.org/10.1038/nsb0498-310
  18. Hakulinen, N.; Kiiskinen, L.-L.; Kruus, K.; Saloheimo, M.;Paananen, A.; Koivula, A.; Rouvinen, J. Nature Structl. Biol.2002, 9, 601.
  19. Piontek, K.; Antorini, M.; Choinowski, M. J. Biol. Chem. 2002,277, 37663. https://doi.org/10.1074/jbc.M204571200
  20. Yaropolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.;Gorton, L. Anal. Chim. Acta 1995, 308, 137. https://doi.org/10.1016/0003-2670(94)00404-A
  21. Liu, Z.; Deng. J.; Li, D. Anal. Chim. Acta 2000, 407, 87. https://doi.org/10.1016/S0003-2670(99)00807-7
  22. Marko-Varga, G.; Emneus, J.; Gorton, L.; Ruzgas, T. Trends Anal.Chem. 1995, 14(7), 319. https://doi.org/10.1016/0165-9936(95)97059-A
  23. Nistor, C.; Emneus, J. Waste Manage. 1999, 19, 147. https://doi.org/10.1016/S0956-053X(99)00006-9
  24. Quan, D.; Kim, Y.; Yoon, K.; Shin, W. Bull. Korean Chem. Soc. 2002, 23(3), 385. https://doi.org/10.1007/BF02706739
  25. Quan, D.; Kim, Y.; Shin, W. J. Electroanal.Chem. 2004, 561, 181. https://doi.org/10.1016/j.jelechem.2003.08.003
  26. Quan, D.; Shin, W. Electroanalysis, in press.
  27. Ghindilis, A. L.; Gavrilova, V. P.; Yaropolov, A. I. Biosens.Bioelectron. 1992, 7, 127. https://doi.org/10.1016/0956-5663(92)90017-H
  28. Freire, R. S.; Thongngamdee, S.; Duran, N.; Wang, J.; Kubota, L.T. Analyst 2002, 127, 258. https://doi.org/10.1039/b110011d
  29. Kim, Y.; Cho, N.; Eom, T.; Shin, W. Bull. Korean Chem. Soc.2002, 23(7), 985. https://doi.org/10.5012/bkcs.2002.23.7.985
  30. Xu, F.; Shin, W.; Brown, S. H.; Wahleithner, J.; Sundaram, U. M.;Solomon, E. I. Biochim. Biophys. Acta 1996, 1292, 303. https://doi.org/10.1016/0167-4838(95)00210-3
  31. Lenhard, J. R.; Murray, R. W. J. Electroanal. Chem. 1977, 78,195. https://doi.org/10.1016/S0022-0728(77)80442-7
  32. Jin, W.; Bier, F.; Wollenberger, U.; Scheller, F. Biosens. Bioelectron.1995, 10, 823. https://doi.org/10.1016/0956-5663(95)99221-6
  33. Wada, S.; Ichikawa, H.; Tatsumi, K. Biotechnol. Bioeng. 1995, 45,304. https://doi.org/10.1002/bit.260450404
  34. Day, S. H.; Legge, R. L. Biotechnol. Tech. 1995, 9, 471. https://doi.org/10.1007/BF00159560
  35. Canofeni, S.; Sario, S. D.; Mela, J.; Pilloton, R. Anal. Lett. 1994,27, 1659. https://doi.org/10.1080/00032719408007425
  36. Estrada, P.; Baroto, W.; Sanchez-Muniz, R.; Acebal, C.; Castillon,M. P.; Arche, R. Prog. Biotechnol. 1992, 8, 483. https://doi.org/10.1016/B978-0-444-89046-7.50071-0
  37. Wada, S.; Ichikawa, H.; Tatsumi, K. Wat. Sci. Tech. 1992, 26,2057. https://doi.org/10.1021/es00035a903
  38. Pena, N.; Reviejo, A. J.; Pingarron, J. M. Talanta 2001, 55, 179. https://doi.org/10.1016/S0039-9140(01)00414-3
  39. Hamann, M. C. J.; Saville, B. A. Food Bioprod. Process 1996, 74,47.
  40. Wada, S.; Ichikawa, H.; Tatsumi, K. Biotechnol. Bioeng. 1993, 42,854. https://doi.org/10.1002/bit.260420710
  41. Zachariah, K.; Mottola, H. A. Anal. Lett. 1989, 22, 1145. https://doi.org/10.1080/00032718908051397
  42. Svitel, J.; Miertus, S. Environ. Sci. Technol. 1998, 32, 828. https://doi.org/10.1021/es9708934
  43. Ortega, F.; Dominguez, E.; Jonsson-Pettersson, G.; Gorton, L. J.Biotech. 1993, 31, 289. https://doi.org/10.1016/0168-1656(93)90075-X
  44. Lisdat, F.; Wollenberger, U.; Markower, A.; Hortnagl, H.; Pfeiffer,D.; Scheller, F. W. Biosens. Bioelectron. 1997, 12(12), 1199. https://doi.org/10.1016/S0956-5663(97)00098-5
  45. Dawson, C. R.; Tarpley, W. B. Ann. N. Y. Acad. Sci. 1963, 100,937.
  46. Forsyth, W. G. C.; Quesnel, V. C.; Roberts, J. B. Biochim.Biophys. Acta 1960, 37(2), 322. https://doi.org/10.1016/0006-3002(60)90240-7
  47. Kazandjian, R. Z.; Klibanov, A. M. J. Am. Chem. Soc. 1985, 107,5448. https://doi.org/10.1021/ja00305a020
  48. Davis, J.; Vaughan, D. H.; Cardosi, M. F. Electrochim. Acta 1998,43(3-4), 291. https://doi.org/10.1016/S0013-4686(97)00086-8
  49. Kobayashi, S.; Higashimura, H. Prog. Polym. Sci. 2003, 28, 1015. https://doi.org/10.1016/S0079-6700(03)00014-5
  50. Kim, M.; Lee, W. Anal. Chim. Acta 2003, 479, 143. https://doi.org/10.1016/S0003-2670(02)01538-6
  51. Campuzano, S.; Serra, B.; Pedrero, M.; Manuel de Villena, F. J.;Pingarron, J. M. Anal. Chim. Acta 2003, 494, 187. https://doi.org/10.1016/S0003-2670(03)00919-X
  52. Liu, Z.; Liu, B.; Kong, J.; Deng, J. Anal. Chem. 2000, 72, 4707. https://doi.org/10.1021/ac990490h
  53. Wang, J.; Chen, Q. Anal. Chim. Acta 1995, 312, 39. https://doi.org/10.1016/0003-2670(95)00207-G
  54. Onnerfjord, P.; Emneus, J.; Marko-Varga, G.; Gorton, L.; Ortega,F.; Domonguez, E. Biosens. Bioelectron. 1995, 10, 607. https://doi.org/10.1016/0956-5663(95)96937-T
  55. Campanela, L.; Beone, T.; Sammartino, M. P.; Tomassetti, M.Analyst 1993, 118, 979. https://doi.org/10.1039/an9931800979
  56. Wang, J.; Lu, F.; Lopez, D. Biosense. Bioelectron. 1994, 9, 9. https://doi.org/10.1016/0956-5663(94)80009-X
  57. Cummings, E. A.; Linquette-Mailley, S.; Mailley, P.; Cosnier, S.;Eggins, B. R.; McAdams, E. T. Talanta 2001, 55, 1015. https://doi.org/10.1016/S0039-9140(01)00532-X
  58. Nister, C.; Emneus, J.; Gorton, L.; Ciucu, A. Anal. Chim. Acta1999, 387, 309. https://doi.org/10.1016/S0003-2670(99)00071-9
  59. Morales, M. D.; Morante, S.; Escarpa, A.; Gonzalez, M. C.; Reviejo, A. L.; Pingarron, J. M. Talanta 2002, 57, 1189. https://doi.org/10.1016/S0039-9140(02)00236-9
  60. Reviejo, A. J.; Fernandez, C.; Liu, F.; Pingarron, J. M.; Wang, J.Anal. Chim. Acta 1995, 315, 93. https://doi.org/10.1016/0003-2670(95)00312-N
  61. Potolsky, F.; Katz, E.; Heleg-Shabtai, V.; Willner, I. Chem. Eur. J.1998, 4(6), 1068. https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1068::AID-CHEM1068>3.0.CO;2-Q
  62. Anh, T. M.; Dzyadevych, S. V.; Soldatkin, A. P.; Chien, N. D.;Jaffrezic-Renault, N.; Chovelon, J.-M. Talanta 2002, 56, 627. https://doi.org/10.1016/S0039-9140(01)00611-7
  63. Kermasha, S.; Tse, M. J. Chem. Technol. Biotechnol. 2000, 75,475. https://doi.org/10.1002/1097-4660(200006)75:6<475::AID-JCTB237>3.0.CO;2-2
  64. Ha, Y.; McCann, M. T.; Tuchman, M.; Allewell, N. M. Proc. Natl.Acad. Sci. USA 1997, 94, 9550. https://doi.org/10.1073/pnas.94.18.9550
  65. Lipscomb, W. N. Adv. Enzymol. Related Areas Mol. Biol. 1994,68, 67. https://doi.org/10.1002/9780470123140.ch3
  66. Allewell, N. M. Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 71. https://doi.org/10.1146/annurev.bb.18.060189.000443

Cited by

  1. A new enzymatic process for the treatment of phenolic pollutants vol.56, pp.4, 2013, https://doi.org/10.1590/S1516-89132013000400016
  2. Carbon Ceramic Electrodes Modified with Laccase fromTrametes hirsuta: Fabrication, Characterization and Their Use for Phenolic Compounds Detection vol.19, pp.9, 2007, https://doi.org/10.1002/elan.200603839
  3. Immobilization of ABTS – laccase system in silicate based electrode for biolectrocatalytic reduction of dioxygen vol.8, pp.12, 2004, https://doi.org/10.1016/j.elecom.2006.08.024
  4. Dual Laccase–Tyrosinase Based Sonogel–Carbon Biosensor for Monitoring Polyphenols in Beers vol.55, pp.20, 2004, https://doi.org/10.1021/jf0711136
  5. Investigation of biosensor signal bioamplification: Comparison of direct electrochemistry phenomena of individual Laccase, and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode vol.75, pp.5, 2004, https://doi.org/10.1016/j.talanta.2008.01.055
  6. Pyrene sulfonate functionalised single-walled carbon nanotubes for mediatorless dioxygen bioelectrocatalysis vol.11, pp.5, 2004, https://doi.org/10.1016/j.elecom.2009.03.007
  7. Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction : SECM activity mapping and application in zinc-dioxygen battery vol.54, pp.20, 2009, https://doi.org/10.1016/j.electacta.2009.02.072
  8. Rotating magnetic field as tool for enhancing enzymes properties - laccase case study vol.9, pp.None, 2004, https://doi.org/10.1038/s41598-019-39198-y