DOI QR코드

DOI QR Code

Multivariate Optimization of a Sulfated- β-Cyclodextrin-Modified Capillary Zone Electrophoretic Method for the Separation of Chiral Arylalcohols

  • Zhang, Yu-Ping (Department of Chemistry, Graduate School, Kyungpook National Univeristy) ;
  • Noh, Hyun-Joo (Department of Chemistry, Graduate School, Kyungpook National Univeristy) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University) ;
  • Ryoo, Jae-Jeong (Department of Chemistry, Graduate School, Kyungpook National Univeristy) ;
  • Lee, kwang-Pill (Department of Chemistry, Graduate School, Kyungpook National Univeristy) ;
  • Ohta, Kazutoku (Ceramic Research Institute, National Institute of Advanced Industrial Science and Technology) ;
  • Fujimoto, Chuzo (Department of Chemistry, Hamamatsu University, School of Medicine) ;
  • Jin, Ji-Ye (Instrumental Analysis Center, Gifu University) ;
  • Takeuchi, Toyohide (Department of Chemistry, Faculty of Engineering, Gifu University)
  • Published : 2004.03.20

Abstract

Chiral separation of aryalcohols such as 1-phenyl-propanol, 1-phenyl-2-proanol, and 2-phenyl-1-propanol by capillary electrophoresis has been optimized using the overlapping resolution mapping (ORM) scheme. Three critical parameters of the electrophoretic media, i.e. phosphate concentration, sulfated ${\beta}$-cyclodextrin (CD) concentration and pH, were chosen for optimization. The working ranges were initially presumed by 7 preexperiments. Further optimization was carried out by another seven experiments within the narrow working ranges. From the final overlapping resolution mapping all peak pairs, the area of maximum separations were located. Using the conditions of a point in this area, we found that the target compounds were a baseline separated within 30 min. The maximum separation conditions of arylalcohols were a chiral selector concentration of 5.4%, a phosphate concentration of 28 mM, and a pH of 5.0.

Keywords

References

  1. Kim, B. E.; Lee, S. H.; Park, K. S.; Lee, K.-P. J. High Resol.Chromatogr. 1997, 20(4), 208. https://doi.org/10.1002/jhrc.1240200405
  2. Maier, N. M.; Urey, G. J. Chromatogr. A 1996, 732, 215. https://doi.org/10.1016/0021-9673(95)01189-7
  3. Wu, Y. S.; Lee, H. K.; Li, S. F. Y. J. Chromatogr. A 2001, 912, 171. https://doi.org/10.1016/S0021-9673(01)00559-3
  4. Lee, W.; La, S.; Choi, Y.; Kim, K.-R. Bull. Korean Chem. Soc.2003, 24(8), 1232. https://doi.org/10.5012/bkcs.2003.24.8.1232
  5. Desiderio, C.; Fanali, S. J. Chromatogr. A 1995, 716, 183. https://doi.org/10.1016/0021-9673(95)00550-7
  6. Guo, L.; Lin, S. J.; Yang, Yi. F.; Qi, Li.; Wang, M. X.; Chen, Yi. J.Chromatogr. A 2003, 998, 221. https://doi.org/10.1016/S0021-9673(03)00653-8
  7. Blanco, M.; Valverde, I. Trends in Anal. Chem. 2003, 22, 428. https://doi.org/10.1016/S0165-9936(03)00705-2
  8. Park, K. H.; Lim, H. S.; Park, J. W. Bull. Korean Chem. Soc. 1999,20(2), 211.
  9. Wielinski, S.; Olszanowski, A. J. Liq. Choromatogr. & Rel. Tech.1999, 22, 3115. https://doi.org/10.1081/JLC-100102079
  10. Pasadakis, N.; Varotsis, N. Fuel. 2000, 79, 1455. https://doi.org/10.1016/S0016-2361(99)00288-4
  11. Zhang, Y. P.; Li, X. J.; Yuan, Z. B.; Zhou, W. F. Chormatographia2003, 57, 59. https://doi.org/10.1007/BF02497478
  12. Sun, S. W.; Wu, A. C. J. Chromatogr. A 1998, 814, 223. https://doi.org/10.1016/S0021-9673(98)00416-6
  13. Mendosa, S. D.; Hurtubise, R. J. J. Liq. Choromatogr. & Rel. Tech.1999, 22, 1027. https://doi.org/10.1081/JLC-100101715
  14. Wang, F.; Khaledi, M. G. J. Chromatogr. A 1999, 731, 187. https://doi.org/10.1016/0021-9673(95)01213-3
  15. Stalcup, A. M.; Gahm, K. H. Anal. Chem. 1996, 68, 1360. https://doi.org/10.1021/ac950764a
  16. Zhang, Y. P.; Yuan, Z. B. Anal. Sci. 2003, 19, 945. https://doi.org/10.2116/analsci.19.945
  17. Glajch, J. L.; Kirkland, J. J. J. Chromatogr. 1980, 199, 57. https://doi.org/10.1016/S0021-9673(01)91361-5
  18. Gabrielsson, J.; Linderg, N. O.; Lundstedt, T. J. Chemometrics2002, 16, 141. https://doi.org/10.1002/cem.697

Cited by

  1. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors vol.114, pp.9, 2014, https://doi.org/10.1021/cr400568b
  2. Recent advances in pharmaceutical applications of chiral capillary electrophoresis vol.41, pp.1, 2004, https://doi.org/10.1016/j.jpba.2006.01.035
  3. Chiral separation by capillary electromigration techniques vol.1204, pp.2, 2004, https://doi.org/10.1016/j.chroma.2008.07.071