DOI QR코드

DOI QR Code

Optical Emission Studies of a Plume Produced by Laser Ablation of a Graphite Target in a Nitrogen Atmosphere

  • Published : 2004.05.20

Abstract

Optical emission studies were performed to investigate thermal and dynamical properties of a plume produced by laser ablation of a graphite target in a nitrogen atmosphere. Experimental spectra of $C_2(d^3{\Pi}_g{\to}a^3{\Pi}_u$, ${\Delta}_V$=1) and CN ($B^2{\Sigma}^+{\to}X^2{\Sigma}^+,{\Delta}_V=0)$ were simulated to obtain the vibrational and rotational temperatures of the electronically excited species at various laser fluences and distances from the target. The spectroscopic temperatures of both molecules were found to be nearly independent of the laser fluence. The temperature of CN molecules was peaked in the middle of the plume while that of $C_2$decreased with increase in the distance. At a given distance, the temperature of CN molecules was clearly higher than that of $C_2$.

Keywords

References

  1. Pappas, D. L.; Saenger, K. L.; Cuomo, J. J.; Dreyfus, R. W. J.Appl. Phys. 1992, 72, 3966. https://doi.org/10.1063/1.352249
  2. Wei, Q.; Narayan, R. J.; Sharma, A. K.; Sankar, J.; Narayan, J. J.Vac. Sci. Technol. A 1999, 17, 3406. https://doi.org/10.1116/1.582074
  3. Qian, F.; Singh, R. K.; Dutta, S. K.; Pronko, P. P. Appl. Phys. Lett.1995, 67, 3120. https://doi.org/10.1063/1.114853
  4. Lu, Y. F.; Ren, Z. M.; Song, W. D.; Chan, D. S. H.; Low, T. S.;Gamani, K.; Chen, G.; Li, K. J. Appl. Phys. 1998, 84, 2909. https://doi.org/10.1063/1.368446
  5. Zhao, X. A.; Ong, C. W.; Tsang, Y. C.; Wong, Y. W.; Chan, P. W.;Choy, C. L. Appl. Phys. Lett. 1995, 66, 2652. https://doi.org/10.1063/1.113114
  6. D'Anna, E.; Luches, A.; Perrone, A.; Acquaviva, S.; Alexandrescu,R.; Mihailescu, I. N.; Zemek, J.; Majni, G. Appl. Surf. Sci. 1996,106, 126. https://doi.org/10.1016/S0169-4332(96)00374-1
  7. Neri, F.; Trusso, S.; Vasi, C.; Barreca, F.; Valisa, P. Thin SolidFilms 1998, 332, 290. https://doi.org/10.1016/S0040-6090(98)00994-8
  8. Leggieri, G.; Luches, A.; Martino, M.; Perrone, A.; Alexandrescu,R.; Barborica, A.; Gyorgy, E.; Mihailescu, I. N.; Majni, G.;Mengucci, P. Appl. Surf. Sci. 1996, 96-98, 866. https://doi.org/10.1016/0169-4332(95)00568-4
  9. Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. https://doi.org/10.1126/science.245.4920.841
  10. Aldea, E.; Caricato, A. P.; Dinescu, G.; Luches, A.; Perrone, A.Jpn. J. Appl. Phys. 1997, 36, 4686. https://doi.org/10.1143/JJAP.36.4686
  11. Yamagata, Y.; Sharma, A.; Narayan, J.; Mayo, R. M.; Newman, J.W.; Ebihara, K. J. Appl. Phys. 1999, 86, 4154. https://doi.org/10.1063/1.371340
  12. Reeve, S. W.; Weimer, W. A. J. Vac. Sci. Technol. A 1995, 13, 359. https://doi.org/10.1116/1.579365
  13. Wee, S. W.; Park, S. M. Optics Commun. 1999, 165, 199. https://doi.org/10.1016/S0030-4018(99)00217-5
  14. Hatem, G.; Colón, C.; Campos, J. Spectrochim. Acta A 1993, 49,509. https://doi.org/10.1016/0584-8539(93)80193-E
  15. Rohlfing, E. A. J. Chem. Phys. 1988, 89, 6103. https://doi.org/10.1063/1.455426
  16. Abhilasha; Thareja, R. K. Phys. Lett. A 1993, 184, 99. https://doi.org/10.1016/0375-9601(93)90354-3
  17. Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Gopinath, P.; Nampoori,V. P. N.; Vallabhan, C. P. G. Spectrochim. Acta A 1997, 53, 1527. https://doi.org/10.1016/S1386-1425(97)00062-0
  18. Koo, Y.-M.; Choi, Y.-K.; Lee, K. H.; Jung, K.-W. Bull. KoreanChem. Soc. 2002, 23, 309. https://doi.org/10.5012/bkcs.2002.23.2.309
  19. Bae, C. H.; Park, S. M. Bull. Korean Chem. Soc. 2002, 23, 1163. https://doi.org/10.5012/bkcs.2002.23.8.1163
  20. Oujja, M.; Rebollar, E.; Castillejo, M. Appl. Surf. Sci. 2003, 211,128. https://doi.org/10.1016/S0169-4332(03)00245-9
  21. Muramoto, J.; Inmaru, T.; Nakata, Y.; Okada, T.; Maeda, M. Appl.Phys. Lett. 2000, 77, 2334. https://doi.org/10.1063/1.1316780
  22. Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Nampoori, V. P. N.; Vallabhan, C. P. G. J. Appl. Phys. 1996, 80, 3561. https://doi.org/10.1063/1.363229
  23. Dinescu, G.; Aldea, E.; De Giorgi, M. L.; Luches, A.; Perrone, A.;Zocco, A. Appl. Surf. Sci. 1998, 127-129, 697. https://doi.org/10.1016/S0169-4332(97)00728-9
  24. Harilal, S. S.; Issac, R. C.; Bindhu, C. V.; Nampoori, V. P. N.;Vallabhan, C. P. G. Plasma Sources Sci. Technol. 1997, 6, 317. https://doi.org/10.1088/0963-0252/6/3/008
  25. Pellerin, S.; Musiol, K.; Motret, O.; Pokrzywka, B.; Chapelle, J. J.Phys. D 1996, 129, 2850.
  26. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecule;Nostrand: New York, 1979.
  27. Vivien, C.; Hermann, J.; Perrone, A.; Boulmer-Leborgne, C.;Luches, A. J. Phys. D 1998, 31, 1263. https://doi.org/10.1088/0022-3727/31/10/019
  28. Park, S. M.; Chae, H.; Wee, S.; Lee, I. J. Chem. Phys. 1998, 109,928. https://doi.org/10.1063/1.476634
  29. Bae, C. H.; Park, S. M. J. Chem. Phys. 2002, 117, 5347. https://doi.org/10.1063/1.1500356

Cited by

  1. Time-resolved optical emission studies on the laser ablation of a graphite target: The effects of ambient gases vol.97, pp.11, 2005, https://doi.org/10.1063/1.1925336
  2. Sensing Signatures Mediated by Chemical Structure of Molecular Solids in Laser-Induced Plasmas vol.87, pp.5, 2015, https://doi.org/10.1021/acs.analchem.5b00212
  3. Acting Role of Background Gas in the Emission Response of Laser-Induced Plasmas of Energetic Nitro Compounds vol.70, pp.8, 2016, https://doi.org/10.1177/0003702816654041
  4. pulsed laser on carbon targets vol.41, pp.10, 2008, https://doi.org/10.1088/0022-3727/41/10/105201
  5. Spatial characterization of the laser-induced plasma plumes generated by IR CO2 pulsed laser on carbon targets vol.94, pp.2, 2009, https://doi.org/10.1007/s00339-008-4814-6
  6. Effects of Transverse Magnetic Field on Laser-produced Carbon Plasma Plume in Nitrogen Atmosphere vol.28, pp.5, 2004, https://doi.org/10.5012/bkcs.2007.28.5.767
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review vol.73, pp.9, 2004, https://doi.org/10.1177/0003702819853252
  9. Ablation-Dominated Arcs in CO2 Atmosphere-Part II: Molecule Emission and Absorption vol.13, pp.18, 2004, https://doi.org/10.3390/en13184720